Proceedings of the 2004 IEEE
International Conference on Control Applications
Taipei, Taiwan, September 2-4, 2004

Fuzzy Neural Networks for Identification and
Control of DC Drive Systems

M. S. Mostafa, M. A. El-Bardini, S. M. Sharaf, M. M. Sharaf

Abstract—This paper demonstrates the application of
Fuzzy Neural Networks (FNN's) in identification and control
of DC motor drive system, This technique compensates the
drawbacks of the fuzzy-logic controllers (FLC) with fixed
membership function and quantization levels. The
membership function and quantization levels are adapted
according to the system operating comdition changes. Two
FNN are proposed with different learning rates. The first is
FNN identifier to provide the sensitivity inference about the
drive system changes. The second is FNN controller with
adaptiveiablty to regulate the drive system against the
operating condition changes and disturbances. An enline
backpropagation algorithm is used to achieve both FNN
identifier and controller objectives. Experimental setup of the
suggested techmique is developed of the DC drive system.
Comparison between the developed techmique and FLC is
highlighted and the experimental test results are listed.

Keywords—Fuzzy Logic, Fuzzy Neural Network, Electrical
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I. INTRODUCTION

During the past years many control techniques have
been developed for improving the performance of
electrical drives. One is the steady state and dynamic
tracking ability to set operating point changes, and the
other is the ability to recover from the load disturbance.

Conventional controllers (such as PI) for such drives [1,
2] are designed on the basis of local linearization about an
operating condition. These controllers are very effective if
the speed command and load changes are small and the
operating conditions do not force the system too far away
from the linearizing point.

In application such as robot arm, and machine tools, the
drive operates under a wide range of load characteristics
and the parameters of the drive system vary extensively.
Thus to ensure a specific dynamic response independent of
variations of the parameters, size of speed command and
load disturbances, a modern control technique is needed.

In this paper, details about the theory and practical
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Fig. t. Block Diagram of the Preposed DC Drive System.

implement of both FNNI and FNNC models of drive
system are illustrated.

The performance of the developed control technigue is
evaluated experimentally on a scaled down laboratory
model consists of DC motor generator set of 5 KW each.
Speed tracking and regulating performance are listed using
the developed FNN control technique when the system is
subjected to speed and load changes. Several experimental
results show that the developed FNN control system
provides an appreciable improvement of motor
performance and very effective control objectives.

II. SySTEM CONFIGURATION

The proposed scheme consists of a separately excited
DC motor supplied by variable DC voltage through a full
wave half controlled thyristorized bridge. A DC generator
is mechanically coupled with the motor to represent a
suitable dynamic loading of the motor. A Pentium 200MHz
computer s facilitated with the system to control the input
voltage of the motor depending on the motor speed. The
motor speed is detected using tachogenerator (1V/300rpm)
coupted mechanically with the motor shaft. Suitable
interfacing circuits are included with the computer to
achieve proper conversion of the system variables. Analog
variable of the system such as motor speed is converted to
digital coding using analog to digital converter (A/D). Also
the controlling signal from the computer is converted to -
analog signal using a digital to analog converter (D/A).

A full wave thyristorized bridge consisting of two
thyristors and two diodes are used. A wide range of
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armature voliage control can be adjusted using a suitable
firing technigue of the bridge thyristors. The firing delay
angles, o’s, of the thyristor gates can be adjusted by a
remote DC controlling voltage level, V.. A linear firing
angle change according to the controlling voltage can be
obtained using reliable firing technique. An optoisclator
module is used to ensure two important functions, the first
is to amplify the firing pulse power, and the second is to
provide the need isolation between the high voltage power
circuit and the low voltage firing circuit and computer. Fig.
1 shows a functional block diagram of the suggested
control scheme.

1. Fuzzy-LoGic CoNTROL (FLC)

Fuzzy control is a practical alternative for a variety of
challenging control applications. It provides a convenient
method for constructing nonlinear controllers via the use of
heuristic information that may come from an operator who
has acted as a controller for process [6]. The fuzzy
controller provides reasonable tracking of the motor speed
to a prespecified reference command. Also it achieves
visible regulating objectives of the motor speed when a
load changes are subjected. The normalized error between
the motor speed and reference command, in addition, the
rate of change of this error are used to gencrate a
controlling signal to update the motor input voltage. The
normalized speed error and its rate of change of the motor
are defined as follows:

e(K) = (NAK) ~ Ny(K) ) / Noper

Ae(K) = e(K) — e(K-1)

where NAK), Nu(K), Npa, &K}, and Ae(K) are the
reference speced, actual motor speed, maximum speed,
normalized speed error, and its rate of change at the Kth
interval.

The block diagram of a fuzzy logic control system is
shown in Fig. 2. The fuzzy logic controller composes of
four parts namely; fuzzification, inference mechanism, rule
base, and defuzzification (4].

The fuzzification transfers the normalized speed error
and the rate of error change degree of match with linguistic
values by comparing it with the membership functions to
obtain the membership values of cach linguistic {abel, The
Inference mechanism takes the fuzzy values of the FLC
inputs to determinc fuzzy outputs using stored rule base.
The Rule base is arranged for all possible cases of the
foputs and outputs. The rules are a set of IF ...THEN ...

Input Laycr  Menibership Layer  Rule Layer Output Layer
i j k o

Fig. 3. Four-Layer FNN.

rules such as:

IF normalized speed error is negative small AN} its rate
of change is negative small THEN output is negative big.

The last part of the FLC is defuzzification, it converts
the controller output from linguistic labels into controlling
voltage to control the input voltage of the derive system.
The most commonly used method is the center of gravity
{COG). This method computes the center of gravity of the
final fuzzy space and produces a result which is sensitive
to all the rules cxecuted;

H
Zﬂc () x;
i=l

i He (xi )
=1

where U, is the output of the defuzzification part, £.(x))
is the degree of membership function of the input x;, and #
is the number of output linguistic variables. The FLC
output at the Kth interval becomes:

u(K) =wK-1) + U,

U

o

IV. Fuzzy NEURAL NETWORKS

A. Description of the Fuzzy Neural Networks (FNN)

A four-layer FNN is shown in Fig. 3. It comprises of
input layer, 7, membership layer, /, rule layer, k, and output
layer, o. The signal propagation and the basic function in
each layer are introduced below [7, 12, 13].

First Layer—Input Layer: For every node i in this

layer, the net input and the net output are represented as:

net! = x]

y,-l = ffl (nel,—i)= nerfl

where X ‘.1 represents the ith input to the node of layer 1.

i=1,2 (1)

Second Layer—Membership Layer: Each node j
performs a membership function which is adopted as
Gaussian function [7]. For the jth node the net input and

the net output are represented as:

2 2
(xi —mi’-

netj; = — ]
()
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y,:,z- =f,y‘?'(net§- )= exp(net,]z- ) f=1...,n )

where m,; and o arc respectively, the mecan and the
standard deviation of the Gaussian function in the jth term
of the ith input linguistic variable, xiz . mis the total number
of the linguistic variables with respect to the input nodes.

Third Layer—Rule Layer: The input signals for each
node are multiplied to produce outputs, yi . For the kth rule
node the net input and the net output are represented as:

k
3_ 3
nel —Hxl-j-

A= pilned Jorned k=1, 3)
where xj represents the input to cach node of layer 3, /

is the number of rules with complete rule connection if
each input node has the same linguistic variables.

Fourth Layer—Qutput Layer: The overall output is
computed by summation of all input signais. The net input
and the net output are represented as:

netg = Z w,?exz
yj =f‘f(net§ )=ne.r;1 Lo=1 “)
where the connecting weight wfa is the output action

strength of the oth output associated with the Ath rule and
xf represents the th input to the node of fourth layer.

B. On-Line Learning Algorithm

To describe the on-line learning algorithm of the FNN
using the supervised gradient decent method [7, 9], first the
energy function E is defined as:

1 2_1 4
E==(yg-yf== 5
2(ya' ¥) ¢ &)

where y, is the desired response, y is the actual output,
and e is the difference between the desired response and
the actual ountput.

The learning algorithm based on backpropagation
method is described below.

Fourth Layer: The error term to be propagated is given

4
s4__ OE __OF Ge & O (6)

The weights arc updated by the amount:

oE
Awg, = g = Mok N

ko
where 7, is the leamning-rate parameter
connecting weights of the FNN.
The weights of the output layer are updated according to
the following equation:

W (K +1) = Wiy (K) + Ay = Wi (K) 4,805 (8)

wherc K is the number of iterations.
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On-Line e
r Lcaming =X
r | Algorith y
1
& Fuzzy £
Neural Up DC
N, = p - >N,
‘ d | Network Motor
rl d’l Controllc
‘, I
Fuzzy
Neural
Netwark
Identifier o
| IS— R Y

Fig. 4. FNN Control System.

Third Layer: Only the error term needs to be calculated
and propagated:

3 eE 4
Bp=— ——=8Wio 9
Onetj;
Second Layer: The error term is computed as follows:
O
5= =250 (10)
Onet Tk
The updated law of m; becomes:
2
oE 2{xi —my)
Amy:"?m—:’]m‘s}'—% {an
am; (o, ij)

where #,, is the learning-rate parameter of the mean of
the Gaussian functions.

The updated law of oy becomes:

2 2
Acy;=—17 —BE = 2..—2{xi_m'j)
i e oOj (O'fj)3

where 7, 1s the learning-rate parameter of the standard
deviation of the Gaussian functions. The mean and
standard deviation of the hidden layer are updated as
follows:

my (K+ 1) = my (K) + Amy

oy (K+ 1) = g3 (K) + Agy

(12)

(13)
(14)

V. FNN CONTROL SYSTEM IMPLEMENTATION

The overall structure of the FNN control system is
shown in Fig. 4. Tt consists of two major parts: FNNI, and
FNNC, in addition, on-ling learning algorithm.

The main purpose of the FNNI is to mimic the dynamic
characteristics of the controlled DC drive system [7, 9].
Two inputs of the FNNI are considered, which are the
control input, u,, and output speed of the DC motor, N,.
The FNNI is trained by backpropagation algoritbm to
obtain an estimated motor speed of the DC motor, 1‘&0. The
learning process minimizes an energy function contains the
error between the actual and estimated motor speed to

provide the sensitivity derivative of the DC motor drive
system to train the FNNC.
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The energy function of FNNI is redefined as follows:

1 21 2
Ep =2 (No=No) =2 (15)
Appling Eq. {6), the error term 5;‘ can be defined as;
oF
8y =——Lo=¢ (16)
Onet,

The sensitivity derivative of the DC motor drive system,
&Ny / dly, is calculated using Eqs. (7-14) and (16) when the

identification error becomes small enough, i.e., N, 2 N,;

. 4 B 1
%z%=%=2wﬁ{yﬁ(—a—"' 2’"“{}&(:7)

I N Ol

where R; is the number of rules in the FNNE.

The purpose of the FNNC is to synthesis the control
signal of the DC motor drive[7, 12]. The inputs of the
FNNC are the speed error and its rate of change. The
FNNC is trained by the backpropagation algorithm to
generate the control signal. The learning process minimizes
an energy function contains the error between desired and
actual motor speed.

The energy function for the FNNC is redefined as
follows:

1 1
Ec=_(Nr_Na)2:_em2 (18)
2 2
The error term 504 in Eq. {6) becomes:
oE
by =——=ed (19)
Onet,,

The remainder of the on-line learning algorithm of both
FNNI and FNNC is the same as described by Egs. (7-14).

VI. EXPERIMENTAL RESULTS

The performance of the drive system using the
developed FNN controller is evaluated by applying several
tests over a wide range of operating conditions.
Comparison of the drive system behavior using FLC and
the FNNC is shown. The initial operating conditions,
disturbance size and other constrains are the same at each
test for both controllers. Series of different tests were
performed on the drive system in order to determine the
most suitable values of the scaling factors, and leaming
rate parameters. The values of scaling factors of FLC, G,,
G, and G, are found to be, 0.01, 1, 5, respectively. The
values of leaming-rate parameters of FNN control system,
Hws Tms and 77 are found to be, 0.15, 0.00001, and 0.00005,
respectively.

At each test the laboratory drive system is started up to
the required operating condition using a developed starting
technique. According to the motor armature current, moter
speed, current limits, and reference speed, the real-time
controller calculates the firing instants of the thyristorized
bridge. The experimental tests of the laboratory drive
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Fig. 6. Response of Speed Step from 600 to 900rpm (a)
Speed of FNN, (b} Control Signal of FNN, (c) Speed of
FLC, and (d) Control Signal of FL.C.

system can be classified into three major types as
following.

A. Fuzzy Neural Network Hentifier Assessment

The FNNI is used to obtain linear model of the whole
drive system with perfect following of the experimental
model changes. An assessment of the FNNI model
accuracy with the real drive system is shown in Fig. 5. The
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speed trajectory of both the identified and experimental
models is displayed. It is obviously clear that the identified
model achieved a very close agreement of the drive speed
trajectory even at fast changes.

B. Reference Speed Command Tracking Test

The effectiveness of the FNNC is obvious by comparing
the motor speed performance using FNNC and FLC. Two
important tests are listed to illustrate the dynamic tracking
ability to reference speed command changes. The first test
is performed when the system is subjected to speed step
from 600 to 900 rpm. While a larger speed step about 600
to 1450 rpm, is applied in the second test. The motor speed
and control voltage of the thyristor circuits are shown for
each test. Fig. 6, and 7 show the motor performance of the
small and large steps respectively. Significant improvement
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Fig. 8. Response to Load Step 800W (a) Speed of FNN,
(b) Control Signal of FNN, {c) Speed of FLC, and (d)
Control Signal of FL.C,

of the drive system performance is insured by using the
intended controller comparing with the use of FLC even at
the small disturbances.

C. Load disturbance test

The drive system performance is compared using FNNC
and FLC when a load disturbance is applied on the motor.
Different disturbance sizes were performed by switch on a
variable resistance across the armature circnit of a DC
generator mechanically coupled with motor. Two tests are
shown for 800 and 1400 watts load step. Fig. 8 and 9
show these test results respectively. In both tests, the load
disturbances are removed afier a short time without any
considerable overshoot.

The motor speed and control voltage of the thyristor are
listed in each test. From the above tests, it is shown that the
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use of FNNC achieves many features such as visible
reduction of speed drop, less overshoot of the speed and
very short settling time to reach of its steady state speed.

VII. CONCLUSION

Practical implementation of realistic speed control of DC
motor drive is performed. Fuzzy neural network controller
is applied to achieve an adaptive membership function
shape. According to the system operation changes the
controller updates the control voltage which is used to
adopt the input voltage of the motor and consequently the
motor speed. A FNNI is implemented to feed the FNNC
with suitable sensitivity derivative to achieve perfect
tracking and regulating control objectives. Detailed
comparison between the developed FNN control technique
and traditional FLC has confirmed that the effectiveness

and superiority of the proposed controller are obvious.
Significant speed tracking and regulating performance are
achieved using the developed FNN control technique when
the system is subjected to speed and load changes. It
observed that the FNN control technique improves the
system performance visibly when the drive system is
subjected to a large disturbance.

REFERENCES

[1} 7. Jun-Keun and S. K. Seung, “DSP-Based Self-Tuning IP Speed
Controller with Load Torque Compensation for Rofling Mill DC
Drive”, [EEE trans. Indust. Electr. vol. 42, no. 4, pp. 382-386, Aug.
1995,

[2] S. M. Sharaf and A, M. Serag, “Practical Identification and PI
Optimal Centroller of A Laboratory Drive System”, Inr. J. Conirol,
vol. 62, no. 3, pp. 511-526, 1995

[3] S. M. Sharaf and M. 1. Mahmoud, “Reference Speed Tracking
Control for DC Motor Drive™, Eurapean Power Electronics and
drives Jownal (EPE}, vol. 3, no. 3, pp. 179-184, Sep. 1993,

[4] €M Liaw and 8.Y. Chang, “Fuzzy Two-Degrees of Freedom Speed
Controller for Motor Drives”, [EEE Trans. Indust. Elecrr., vol. 42,
no. 2, pp. 209-216, 1995.

[5] §. M. Sharaf, “Improving the Performance of a DC Drive Using
Fuzzy Logic Controller”, 23" /nr. conf. for statistics, computer
Seience and Its Applications, 1998,

[6] K. M. Passino and 8. Yorkovich, “Fuzzy Control”, Addison-Wesley
1998,

[7] F.J Lin, R. J. Wai, aod R. Y. Duan, “Fuzzy Neural Network for
Identification and Control of Ulwasonic Motor Drive with LLCC
Resonant Technique”, JEEE Trans. Ind. Eleciron., vol. 46, pp. 999 —
1011, Oct. 1999.

[8] C. T. Lin and C. 8. G. Lee, “Neural-Network-Based Fuzzy Logic
Control and Decision System”, JEEE Trans. Computers, vol. 40. pp.
1320-1336. Dec. 1991,

[9] 1. 8. Roger and C. T. Sun, “Neuro-Fuzzy Modeling and Control”,
Proc. [EEE, vol. 83, 0.3, pp. 378 — 405, Mar 1993.

[10]S. Horikawa, T. Furuhashi and Y. Uchikawa, “On Fuzzy Modeling
Using Fuzzy Neural Networks with the Backpropagation
Algorithm”, IEEE Trans. Neural Networks, vol. 3, pp. 801-806,
Sept. 1992.

[11]5. ©. Jang and P. G. Lee, “Neuro-fuzzy Control for DC Motor
Friction Compensation”, Proc. IEEE Conf. Decision and Controd,
pp. 3550-3555, Sydney, Australia, 2000.

[12]7. 5. Wang and C. S. Geoege, “Self-Adaptive Neuro-Fuzzy Inference
Systems for Classification Applications”, Fuzzy Spst., vol. 10, no. 6,
pp. 790-802, Dec. 2002.

[13]S. 7. Lee and C. S. Ouyang, “A Neuro-Fuzzy System Modeling With
Self-Constructing Rule Generation and Hybrid SVD-Based
Leaming™, Frezzy Swst,, vol. 11, no. 3, pp. 341-353, June 2003,

603



