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Fuzzy identification of T-S model for beam stability control for electron gun∗
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In this paper, Takagi-Sugeno (T-S) fuzzy control is proposed for stabilizing the output beam of accelera-
tors. To model the nonlinear system, we proposed a hybrid optimization algorithm based on quantum-inspired
differential evolution and genetic algorithm. Based on the T-S model identified, the corresponding state-
feedback fuzzy controller is designed. The method is applied to the LaB6 electron gun system in the industrial
radiation accelerator and the simulation results show its effectiveness.
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I. INTRODUCTION

Nonlinear control systems based on T-S fuzzy model have
attracted lots of attention. It provides a powerful solution for
controlling real systems of strong nonlinearity or high degree
of uncertainty. This model-based control strategy has been
applied to industries of manufacturing, chemicals, aerospace
engineering, etc. [1–3].

In this paper, T-S fuzzy control approach is introduced into
the beam stability control of high voltage electron accelera-
tors for radiation processing. The electron beam stability is
a crucial parameter of accelerators. The factors causing in-
stability of accelerator operation include power source age-
ing, vacuum variation, voltage stability of the filament, elec-
tromagnetic interference, etc. For an E-beam irradiator, the
beam stabilization is realized by an electron gun control sys-
tem that compensates for the beam variations by changing
the grid-cathode voltage. The electron gun has the char-
acteristics of nonlinear, time-varying and large inertia, so
it is difficult for a traditional PID controller (proportional-
integral-derivative controller) to work satisfactorily. The T-S
fuzzy control, which controls intelligently with a great adap-
tive ability, is suitable for such complex nonlinear systems.
Using input-output data, we can obtain a fuzzy model of the
system represented in the form of a set of fuzzy rules. Each
rule is considered as a local linear model, hence the conve-
nience in designing the feedback controller and analyzing sta-
bility of the overall closed-loop system. The use of T-S fuzzy
control in industrial process control guarantees great accu-
racy for its universal approximation property, but an inher-
ent drawback remains due to complications in identifying the
global fuzzy model, with the proposed control algorithm be-
ing computation-intensive and time-consuming. The problem
can be solved by selecting controllers with high-performance
arithmetic capability and large storage space.

The paper is organized as follows. In Sec. II, we present
an optimization algorithm based quantum-inspired differen-
tial evolution (QDE) and genetic algorithm (GA). The T-S
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fuzzy modeling is checked in Sec. III. Section IV illustrates
the detailed design procedure of the T-S fuzzy controller for
the LaB6 electron gun system. Finally, conclusions are sum-
marized in Sec. V.

II. METHOD OF T-S FUZZY MODELING

The T-S fuzzy model, proposed by Takagi and Sugeno in
1985 [4], is a powerful tool to model and control complex
nonlinear systems. For multi-input single-output (MISO) sys-
tems, the typical T-S fuzzy model is

Ri : if x1 is Ai1 and x2 is Ai2 and . . . and xm is Aim,

then yi(k) = pi0 + pi1x1 + pi2x2 + · · ·+ pimxm

(1 ≤ i ≤ c),
(1)

where x = [x1, x2, . . . , xm] is input variable,Aij is fuzzy set,
yi(k) is the output of rule Ri, and Pij represents consequent
parameter. The model output y is the weighted average of the
individual rule outputs.

y =

c∑
i=1

wiyi

/ c∑
i=1

wi. (2)

Given a set of data {x(k), y(k)}(k = 1, 2, L,N), a dis-
crete T-S fuzzy model can be identified from the input-output
data [5]. The whole modeling process involves the following
steps:

Step 1: Input variables selection. The first task is to select
input variables xj(1 ≤ j ≤ m) from process variables.
The selection is complex and usually decided according
to expert knowledge.

Step 2: Fuzzy partition. The input space is divided intom∗c
fuzzy sets by fuzzy c-means cluster method.

Step 3: Fuzzification. Each input variable xj is transformed
into fuzzy language with the selected Gaussian mem-
bership functions.

uAij (x) = exp

(
−(x− ctij)2

2σ2
ij

)
(3)
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LÜ Bin, SU Hai-Jun and LI De-Ming Nucl. Sci. Tech. 26, 050104 (2015)

Fig. 1. Encoding scheme.

The parameter ctij is the center of membership function
and σi

j determines its width.

Step 4: Parameter optimization. We propose a hybrid op-
timization algorithm based QDE and GA to learn the
premise parameters ctij and σi

j , and consequent param-
eters pij . To start with the proposed algorithm, all pa-
rameters are encoded in a quantum bit (Q-bit) chromo-
some shown in Fig. 1. According to the definition of Q-
bit, |αij |2 represents the probability that the Q-bit state
toward 0 and the value of αt

ij is chosen in the range
of [−1, 1]. L is the length of a Q-bit individual. The
quantum encoding solution offers a powerful mean to
represent the solution space and make the search space
larger. Here, the hybrid optimization method is dis-
cussed in detail below.

(1) Generate the initial population. Let Q(t) =
(qt1, q

t
2, . . . , q

t
M ) denotes the population at generation

t, where M is the size of the population and qt
i is a

Q-bit individual defined as qt
i = [αt

i1, α
t
i2, . . . , α

t
iL] .

(2) Fitness function. The fitness function of each individ-
ual is the mean square error (MSE) calculated as

MSE =
1

N

N∑
t=1

[
ˆy(t)− y(t)

]2
, (4)

where N is the number of input-output data pairs, ˆy(t)
is the actual output, and y(t) is the model output.

(3) Iteration. The operators of QDE proposed in Ref. [6],
which includes mutation, crossover and selection, is
employed here to update the Q-bit chromosome. And
the three operations are presented in the following.

Mutation: The mutant vector vt
i = [vti1, v

t
i2, . . . , v

t
im] on

a target vector qt
i is generated by

vt
i = qtr1 + F (qtr2 − qtr3), (5)

where r1, r2 and r3 are random integers generated from
{1, 2, . . . , n} and F ∈ (0, 2) is control parameter.

Crossover: The crossover operation is to diverse the pop-
ulation. A new vector (q′)ti = [(q′)ti1, (q

′)ti2, . . . , (q
′)tim] is

generated from the target vector qti and the mutant vector vti .

(q′)tij =

{
vtij , if randi,j ≤ CR or j = Jrand
αt
ij , otherwise , (6)

where CR ∈ [0, 1] is crossover rate, randi,j is a random
number that satisfies U [0, 1] and Jrand is randomly chosen

integer from {1, 2, . . . ,m}. To solve the problem of fitness
calculation, the observation process defined by the following
equation is implemented in each generation.

utij =

{
1, if rand() < 1− |αij |2
0, otherwise , (7)

where i and j are random integers.
Once the corresponding binary population is observed, the

fitness value of the individuals can be evaluated.
Selection: For the minimum optimization problem, the in-

dividuals with smaller objective function values replace the
target vectors and are preserved for the next generation.

xt+1
i =

{
(u′)ti, if f(uti) ≤ f(xti)
xti, otherwise , (8)

qt+1
i =

{
(q′)ti, if f(uti) ≤ f(xti)
qti , otherwise , (9)

where xti and uti are the observed binary individuals on qti and
(q′)ti .

GA is also a population-based algorithm like QDE and
uses similar operators [7]. The combination is to avoid being
trapped in local optimum and to improve efficiency and accu-
racy of the optimization. Assuming Pc ∈ [0, 1] as crossover
probability, Pm ∈ [0, 1] as mutation probability and T as the
maximum generation, the iteration process is described in the
following.

Algorithm 1: Procedure of the hybrid optimization
algorithm

begin
t = 0 initialize Q(t)
t = t+ 1
while (t ≤ T ) do

make X(t) by observing the state of Q(t)
generate the mutation operator V (t) using Eq. (5)
make Q′(t) using the crossover operator in Eq. (6)
obtain U(t) by observing the state of Q′(t) according
to Eq. (7)
evaluate X(t) and U ′(t)
update X(t+ 1) and Q(t+ 1) by the selection
operator in Eqs. (8) and (9)
start with the population U ′(T ) and calculate the
fitness of each chromosome in the population
apply the roulette wheel selection to U ′(T )
perform uniform crossover with probability Pc

make U ′(t+ 1) using simple mutation with
probability Pm

replace the current population Q(t) with the new
population U ′(t+ 1)

end
end

Step 5. The best individual is used to construct the T-S
fuzzy model.
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TABLE 1. Comparison of different methods for Box-Jenkins data
Method Inputs Rules MSE
Sugeno et al. [8] 3 6 0.190
Li et al. [9] 2 2 0.1608
Our method 3 5 0.1226
Leski [10] 10 2 0.1185

III. EXPERIMENTAL EXAMPLES

Three kinds of nonlinear system modeling have been con-
ducted to validate capability of the proposed method.

A. Identification of the Box-Jenkins gas furnace

The Box-Jenkins gas furnace data set, with 296 pairs of
data points {u(k), y(k)}, is considered as a standard exper-
imental data to test the validity of fuzzy modeling, where
u(k) is the input gas rate in ft3/min and y(k)is the percentage
concentration of output CO2. To construct the fuzzy model,
{y(k − 1), u(k − 3), y(k − 2)} is defined as the input vari-
able and y(k) is the output variable. So the available data are
k = 4 : 296. So, the number of data pairs for identification is
N = 293. The other parameters are r = 5, M = 40, L = 16,
T = 100, F = 0.1, CR = 0.5, Pc = 0.5, and Pm = 0.008.

The T-S fuzzy model is built and the mean square error of
the T-S fuzzy model is 0.1226. Table 1 compares the per-
formance of our method with other modeling technologies.
Our model has a smaller error than the other methods except
Ref. [10]. Figure 2(a) shows the predicted and actual out-
put values on the gas furnace data. Figure 2(b) shows the
prediction error. One can see that the model output fits the
experimental data very well.

Fig. 2. (Color online) Modeling performance for Box-Jenkins fur-
nace data: (a) the original and estimated data, (b) deviations from
the original data.

B. Function approximation

We carry out the algorithm on the double input single out-
put (DISO) system described as

y = (1 + x1
−2 + x2

−1.5)2 1 ≤ x1, x2 ≤ 5. (10)

The goal is to approximate the nonlinear function using a
T-S fuzzy model. We obtain 300 data points with a random
input signal x = (x1, x2), where x1 and x2 distribute uni-
formly in Ref. [1, 5]. The x1(k) and x2(k) are selected as
the input variables to predict the output y(k). The parame-
ters of the modeling algorithm are r = 6, M = 40, L = 16,
T = 100, F = 0.2, CR = 0.6, Pc = 0.5, and Pm = 0.2.

Figure 3 shows the modeling performance by comparing
the modeled and actual outputs, and giving the prediction er-
rors. The modeling error (MSE) is 0.0756 (Table 2), being
better than those of the other two methods. So, our method is
effective on nonlinear plant approximation problem.

Fig. 3. (Color online) Modeling performance for DISO nonlinear
system: (a) the original and estimated data, (b) deviations from the
original data.

TABLE 2. Results for function estimation using different methods
Method Inputs Rules MSE
Sugeno et al. [11] 2 6 0.079
Gómez-Skarmeta et al. [12] 2 5 0.09
Our method 2 6 0.0756

C. UCI datasets

In this section, the evaluation of the proposed modeling
approach is based on two datasets from the UCI repository:
auto-mpg dataset and Boston housing dataset. The auto-mpg
problem is to predict the fuel consumption (mpg) for automo-
bile based on 4 continuous attributes (displacement, horse-
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power, weight, acceleration) and 3 multi-valued discrete at-
tributes (cylinders, model year, origin). The attribute ‘car
name’ is omitted here and a total of 392 observations are col-
lected for the prediction. The Boston housing problem is to
predict the median value of owner-occupied homes in suburbs
of Boston using 12 continuous inputs and one binary-valued
input. The database has 506 observations. Due to different
types of input variables, a mixed quantum encoding scheme
is used. The discrete and continuous variables are encoded
respectively.

Fig. 4. The mixed coding.

As shown is Fig. 4, nc and nd are numbers of continuous
variables and discrete variables in each rule. K is the length
of discrete variable, which satisfies 2K ≥M (M is the num-
ber of possible values of each discrete variable). The param-
eters of auto-mpg are r = 5, M = 40, L = 16, K1 = 2,
K2 = 4, K3 = 2, T = 100, F = 0.2, CR = 0.6, Pc = 0.5,
and Pm = 0.2. The parameters of Boston housing are set the
same as auto-mpg but the length of discrete variable CHAS is
K = 1.

TABLE 3. Comparison of different methods for auto-mpg and
Boston housing
Data sets Method Inputs Rules MSE
Auto-mpg Castellano et al. [13] 2 4 7.8961

Gaweda et al. [14] 2 3 7.0756
Abonyi et al. [15] 2 4 5.6169
Our method 7 5 0.4502

Boston housing Han et al. [16] 6 2 8.2944
Huang et al. [17] 4 16 2.7225
Our method 13 5 0.6237

Using this modeling method, MSE for both train-
ing datasets are 0.4502 and 0.6237, respectively. The
identification error of the proposed algorithm is compared
with the performance of some other methods, as shown in
Table 3. It can be seen that the proposed algorithm performs
better than other algorithms in terms of MSE. The model-
ing performance of the fuzzy models and the prediction error
are shown in Fig. 5. It can be seen that the prediction error
is small and it can approximate the actual output well with
fewer rules. The results indicate that the proposed algorithm
has a good prediction capability.

Fig. 5. (Color online) Modeling performance for (a) auto-mpg and
(b) Boston housing datasets.

Fig. 6. (Color online) Schematic diagram of the LaB6 electron gun
system.

IV. T-S FUZZY CONTROL FOR LAB6 ELECTRON GUN
SYSTEM

A. Model identification

The LaB6 electron gun experiment platform (Fig. 6) mainly
consists of a LaB6 cathode electron-gun, a 40 kV/500mA sta-
bilized high voltage power supply, a high voltage isolated
power supply for the LaB6 filament, a water-cooled Faraday
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cup, beam current measurement system, beam scanning sys-
tem and vacuum system. In the experiment, all measurements
were carried out in normal operating conditions. Firstly the
LaB6 cathode was preheated for activating purpose. Then the
electron beam was adjusted by changing the filament volt-
age of the electron gun manually. During the test, 52 input-
output data pairs (filament voltage Vf and output beam cur-
rent Ie) were recorded while operating at a high DC voltage
of 27.5 kV.

According to the modeling method above, X = [Vf (k −
1), Ie(k − 1), Ie(k − 2), Ie(k − 3)] was selected as the input
variable and Ie was defined as the output variable. SoN = 49
data pairs were available. In order to simplify the structure of
the controller, the number of fuzzy rules was set as r = 6. The
other parameters were M = 40, L = 16, T = 100, F = 0.1,
CR = 0.5, Pc = 0.5, and Pm = 0.2. After identification
from the measured data pairs, the final T-S fuzzy model is
described as the following:

R1 : if Ie(k − 1) is U(18.7397, 2.5292) and Ie(k − 2) is U(15.9169, 4.0700) and Ie(k − 3)

is U(13.7828, 13.0126) and Vf (k − 1) is U(186.5834, 2.5872),

then Ie(k) = 0.8085Ie(k − 1) + 0.4888Ie(k − 2)− 0.6445Ie(k − 3)− 0.0079Vf (k − 1);

R2 : if Ie(k − 1) is U(2.8225, 8.2622) and Ie(k − 2) is U(2.6088, 13.2683) and Ie(k − 3)

is U(2.4146, 8.7800) and Vf (k − 1) is U(162.5288, 17.7748),

then Ie(k) = −0.3957Ie(k − 1)− 0.4018Ie(k − 2) + 3.0076Ie(k − 3) + 0.0465Vf (k − 1),

u(x) = e−
(x−c)2

2σ2 , (x ∈ U(c, σ)).

(11)

Fig. 7. (Color online) Simulation results of LaB6 electron gun data.

The simulation results is shown in Fig. 7. The fuzzy model

approximate the electron gun system very well. The modeling
error is just MSE = 0.1593.

B. State feedback control based on T-S fuzzy model

Model-based control design is considered to be an impor-
tant application [18, 19]. For the input-output T-S fuzzy
model in Eq. (11), we define the state vector x(k) =
[Ie(k), Ie(k − 1), Ie(k − 2)]T and the input variable u(k) =
Vf (k). The selection of the state vector for T-S state-space
fuzzy model is a little different. The model is useful for con-
trol only when each rule share the same state vector [20].
Then we have the following T-S state-space model [21, 22]

Ri : if Ie(k − 1) is M i
1 and Ie(k − 2) is M i

2 and Ie(k − 3) is M i
3 and Vf (k − 1) is M i

4,

then

{
xi(k + 1) = Aix(k) +Biu(k)

yi(k) = Cix(k)
(i = 1, 2).

A1 = [0.8085 0.4888 − 0.6445; 100; 010], B1 = [−0.0079 0 0]T , C1 = [1 0 0],

A2 = [−0.3957 − 0.4018 3.0076; 100; 010], B2 = [0.0465 0 0]T , C2 = [1 0 0].

(12)

The state feedback controller designed by PDC means [23–
25] is

CRi : if Ie(k − 1) is M i
1 and Ie(k − 2) is M i

2

and Ie(k − 3) is M i
3 and Vf (k − 1) is M i

4

then ui(k)=r(k)− Fix(k) (i = 1, 2),

, (13)

where r(k) is a reference input and Fi is the feedback gain.
The stability analysis and design of the fuzzy controller are

important issues for fuzzy control systems. In our work, the
controller was designed directly to guarantee stability of the
overall system [26]. The stability analysis was based on Lya-
punov approach, which was proposed by Tanaka and Sugeno.
The theorem can be applied to derive the following stability
conditions:
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Fig. 8. (Color online) The state-variable response (a) and output-
variable response (b), under x0 = [23.5, 18.17.5]T .

(Ai −BiFi)
TP(Ai −BiFi)−P < 0(

Ai−BiFj+Ai−BjFi
2

)T
P
(

Ai−BiFj+Ai−BjFi
2

)
−P < 0

(14)

Now multiplying both the inequalities on the left and right
by P−1 and defining new variables Q = P−1, Ni =
FiQ [27], the inequalities can be rewritten as:



Q−(AiQ−BiNi)
TQ−1(AiQ−BiNi) > 0

Q−
(
(Ai +Aj)Q−BiNj −BjNi

2

)T

×Q−1
(
(Ai +Aj)Q−BiNj −BjNi

2

)
> 0

.

(15)

Based on the Schur complements, the conditions are equiv-
alent to:



[
Q (AiQ−BiNi)

T

(AiQ−BiNi) Q

]
> 0, i = 1, 2, · · · , r Q

(
(Ai+Aj)Q−BiNj−BjNi

2

)T(
(Ai+Aj)Q−BiNj−BjNi

2

)
Q

 > 0, i < j ≤ r
. (16)

The newly defined variables Q and Ni can be obtained.
Finally, the common positive definite matrix is P = Q−1

and the state feedback gains are calculated by Pi = NiQ
−1.

Considering the system described in Eq. (11), the
coefficient matrixes are already known. So we have:

P =

 0.0177 −0.0009 −0.0035
−0.0009 0.0070 −0.0005
−0.0035 −0.0005 0.0045

 ,
F1 =

[
−17.6663 −15.1942 66.4235

]
,

F2 =
[
−11.5028 −13.4181 65.0920

]
.

(17)

It can be verified that each subsystem is locally stable
by calculating its closed-loop poles. And existence of the
common positive definite matrix P guarantees stability of
the overall close-loop system. Simulation was performed to
demonstrate effectiveness of the electron gun controller, with
the initial condition of x0 = [23.5, 18.17.5]T , Fig. 8(a) shows
the trajectory of x1(k), x2(k) and x3(k) under control of the

proposed state-feedback controller, and in Fig. 8(b) the output
is globally asymptotically stable.

V. CONCLUSION

In this paper, we have proposed a novel hybrid optimiza-
tion algorithm based on QDE and GA. And it is applied suc-
cessfully to the T-S fuzzy modeling procedure of the LaB6
electron gun system. The simulation results show that the
modeling method has a strong ability to modeling complex
nonlinear systems. Furthermore, we design a state-feedback
fuzzy controller based on T-S state-space fuzzy model using
the PDC method. The design of the fuzzy controller and the
stability analysis of the fuzzy control system have been com-
pleted at the same time. The approach is considered to be
more practical and the simulation results show that the pro-
posed T-S fuzzy control system has good control stability.
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[18] Hästbacka D, Vepsäläinen T and Kuikka S. Model-
driven development of industrial process control appli-
cations. J Syst Software, 2011, 84: 1100–1113. DOI:
10.1016/j.jss.2011.01.063

[19] Van Den Hof P M J and Schrama R J P. Identification and
control–Closed-loop issues. Automatica, 1995, 31: 1751–
1770. DOI: 10.1016/0005-1098(95)00094-X

[20] Wong L K, Leung F H F and Tam P K S. Design of fuzzy logic
controllers for Takagi–Sugeno fuzzy model based system with
guaranteed performance. Int J Approx Reason, 2002, 30: 41–
55. DOI: 10.1016/S0888-613X(02)00062-2

[21] Tahani V and Sheikholeslam F. Stability analysis and design of
fuzzy control systems. The IEEE World Congress on Computa-
tional Intelligence (IEEE WCCI), Anchorage, May 4–9, 1998.
DOI: 10.1109/FUZZY.1998.687529

[22] Cao S G, Rees N W and Feng G. Analysis and design of fuzzy
control systems using dynamic fuzzy-state space models. IEEE
T Fuzzy Syst, 1999, 7: 192–200. DOI: 10.1109/91.755400

[23] Ying H. Analytical analysis and feedback linearization track-
ing control of the general Takagi-Sugeno fuzzy dynamic sys-
tems. IEEE T Syst Man Cy C, 1999, 29: 290–298. DOI:
10.1109/5326.760573

[24] Tseng C S, Chen B S and Uang H J. Fuzzy tracking control de-
sign for nonlinear dynamic systems via T-S fuzzy model. IEEE
T Fuzzy Syst, 2001, 9: 381–392. DOI: 10.1109/91.928735

[25] Cao S G, Rees N W and Feng G. Analysis and design of fuzzy
control systems using dynamic fuzzy global models. Fuzzy Set
Syst, 1995, 75: 47–62. DOI: 10.1016/0165-0114(94)00323-Y

[26] Wang H O, Tanaka K and Griffin M F. An approach to fuzzy
control of nonlinear systems: stability and design issues. IEEE
T Fuzzy Syst, 1996, 4: 14–23. DOI: 10.1109/91.481841

[27] Tanaka K, Ikeda T and Wang H O. Fuzzy control system design
via LMIs. American Control Conference, New Mexico, Jun. 4–
6,1997. DOI: 10.1109/ACC.1997.611982

050104-7

http://dx.doi.org/10.1016/S0888-613X(01)00027-5
http://dx.doi.org/10.1016/S0888-613X(01)00027-5
http://dx.doi.org/10.1016/j.ijepes.2012.09.020
http://dx.doi.org/10.1109/91.277961
http://dx.doi.org/10.1109/91.277961
http://dx.doi.org/10.1109/TSMC.1985.6313399
http://dx.doi.org/10.1016/j.neucom.2008.11.001
http://dx.doi.org/10.1016/j.eswa.2010.11.107
http://dx.doi.org/10.1016/j.eswa.2010.11.107
http://dx.doi.org/10.1016/j.jfranklin.2010.10.004
http://dx.doi.org/10.1016/j.jfranklin.2010.10.004
http://dx.doi.org/10.1109/TFUZZ.1993.390281
http://dx.doi.org/10.1109/TFUZZ.1993.390281
http://dx.doi.org/10.1016/j.neucom.2008.03.002
http://dx.doi.org/10.1109/TFUZZ.2004.840094
http://dx.doi.org/10.1109/TFUZZ.2004.840094
http://dx.doi.org/10.1109/FUZZY.1995.409774
http://dx.doi.org/10.1109/FUZZY.1995.409774
http://dx.doi.org/10.1016/S0165-0114(97)00276-5
http://dx.doi.org/10.1016/S0165-0114(97)00276-5
http://dx.doi.org/10.1109/TFUZZ.2002.803491
http://dx.doi.org/10.1109/TSMCB.2002.1033180
http://dx.doi.org/10.1109/TSMCB.2002.1033180
http://dx.doi.org/10.1007/978-3-642-04020-7_20
http://dx.doi.org/10.1155/2013/725017
http://dx.doi.org/10.1155/2013/725017
http://dx.doi.org/10.1016/j.jss.2011.01.063
http://dx.doi.org/10.1016/j.jss.2011.01.063
http://dx.doi.org/10.1016/0005-1098(95)00094-X
http://dx.doi.org/10.1016/S0888-613X(02)00062-2
http://dx.doi.org/10.1109/FUZZY.1998.687529
http://dx.doi.org/10.1109/91.755400
http://dx.doi.org/10.1109/5326.760573
http://dx.doi.org/10.1109/5326.760573
http://dx.doi.org/10.1109/91.928735
http://dx.doi.org/10.1016/0165-0114(94)00323-Y
http://dx.doi.org/10.1109/91.481841
http://dx.doi.org/10.1109/ACC.1997.611982

	Fuzzy identification of T-S model for beam stability control for electron gun
	Abstract
	Introduction
	Method of T-S fuzzy modeling
	Experimental examples
	Identification of the Box-Jenkins gas furnace
	Function approximation
	UCI datasets

	T-S fuzzy control for "3222378  electron gun system
	Model identification
	State feedback control based on T-S fuzzy model

	Conclusion
	References


