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Sub-Nyquist Sampling and Compressed Sensing
in Cognitive Radio Networks

Hongjian Sun, Arumugam Nallanathan, and Jing Jiang

Abstract Cognitive radio has become one of the most promising solutions for ad-
dressing the spectral under-utilization problem in wireless communication systems.
As a key technology, spectrum sensing enables cognitive radios to find spectrum
holes and improve spectral utilization efficiency. To exploit more spectral opportu-
nities, wideband spectrum sensing approaches should be adopted to search multi-
ple frequency bands at a time. However, wideband spectrum sensing systems are
difficult to design, due to either high implementation complexity or high finan-
cial/energy costs. Sub-Nyquist sampling and compressed sensing play crucial roles
in the efficient implementation of wideband spectrum sensing in cognitive radios.

In this chapter, Section 1 presents the fundamentals of cognitive radios. A liter-
ature review of spectrum sensing algorithms is given in Section 2. Wideband spec-
trum sensing algorithms are then discussed in Section 3. Special attention is paid
to the use of Sub-Nyquist sampling and compressed sensing techniques for realiz-
ing wideband spectrum sensing. Finally, Section 4 shows an adaptive compressed
sensing approach for wideband spectrum sensing in cognitive radio networks.

1 Cognitive Radio Networks

Nowadays, radio frequency (RF) spectrum is a scarce and valuable natural resource
due to its unique character in wireless communications. Under the current policy, the
primary user of a frequency band has exclusive rights of using the licensed band.
With the explosive growth of wireless communication applications, the demands
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Fig. 1 Dynamic spectrum access and spectrum holes [3].

for the RF spectrum are constantly increasing. It becomes evident that such spec-
tral demands cannot be met under the exclusive spectral allocation policy. On the
other hand, it has been reported that the temporal and geographic spectral utiliza-
tion efficiency is very low. For example, the maximal occupancy of the frequency
spectrum between 30 MHz and 3 GHz (in New York City) has been reported to be
only 13.1%, with the average occupancy of 5.2% [1]. As depicted by Figure 1, the
spectral under-utilization problem can be addressed by allowing secondary users to
dynamic access the licensed band when its primary user is absent.Cognitive radio
is one of the key technologies that could improve the spectral utilization efficiency
as suggested by Prof. S. Haykin [2]:

Cognitive radio is viewed as a novel approach for improving the utilization of a precious
natural resource: the radio electromagnetic spectrum.

1.1 Cognitive radio definition and components

The termcognitive radio, first coined by Dr. J. Mitola [4], has the following formal
definition [2]:

Cognitive radio is an intelligent wireless communication system that is aware of its sur-
rounding environment (i.e. outside world), and uses the methodology of understanding-by-
building to learn from the environment and adapt its internal states to statistical variations
in the incoming RF stimuli by making corresponding changes in certain operating param-
eters (e.g., transmit-power, carrier-frequency, and modulation strategy) in real-time, with
two primary objectives in mind:
• highly reliable communications whenever and wherever needed;
• efficient utilisation of the radio spectrum.
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Fig. 2 The cognitive capability of cognitive radio enabled by a basic cognitive cycle [5].

From the definition, the key characteristic of cognitive radio is cognitive capa-
bility. It means that cognitive radio should interact with its environment, and intelli-
gently determine appropriate communication parameters based on quality of service
(QoS) requirements. These tasks can be implemented by a basic cognitive cycle as
illustrated in Figure 2:

• Spectrum sensing: To improve the spectral utilization efficiency, cognitiveradio
should regularly monitor the RF spectral environment. Cognitive radio should
not only find spectrum holes, which are not currently used by primary users, by
scanning the whole RF spectrum, but also needs to detect the status of primary
users for avoiding causing potential interference.

• Spectrum analysis: After spectrum sensing, the characteristics of spectrum holes
should be estimated. The following parameters need to be known, e.g., chan-
nel side information, capacity, delay, and reliability, and will be delivered to the
spectrum decision step.

• Spectrum decision: Based on the characteristics of spectrum holes, an appropri-
ate spectral band will be chosen for a particular cognitive radio node according
to its QoS requirement while considering the whole network fairness. After that,
cognitive radio could determine new configuration parameters, e.g., data rate,
transmission mode, and bandwidth of the transmission, and then reconfigure it-
self by using software defined radio techniques.
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1.2 Applications of Cognitive Radio Networks

Because cognitive radio is aware of the RF spectral environment and is capable
of adapting its transmission parameters to the RF spectral environment, cognitive
radio and the concepts of cognitive radio can be applied to a variety of wireless
communication environments, especially in commercial andmilitary applications.
A few of applications are listed below:

• Coexistence of wireless technologies: Cognitive radio techniques were primarily
considered for reusing the spectrum that is currently allocated to the TV service.
Wireless regional area network (WRAN) users can take advantage of broadband
data delivery by the opportunistic usage of the underutilized spectrum. Addi-
tionally, the dynamic spectrum access techniques will playan important role
in full interoperability and coexistence among diverse technologies for wireless
networks. For example, cognitive radio concepts can be usedto optimize and
manage the spectrum when the wireless local area network (WLAN) and the
Bluetooth devices coexist.

• Military networks: In military communications, bandwidth is often at a premium.
By using cognitive radio concepts, military radios can not only achieve substan-
tial spectral efficiency on a noninterfering basis, but alsoreduce implementation
complexity for defining the spectrum allocation for each user. Furthermore, mil-
itary radios can obtain benefits from the opportunistic spectrum access function
supported by the cognitive radio [6]. For example, the military radios can adapt
their transmission parameters to use Global System for Mobile (GSM) bands, or
other commercial bands when their original frequencies arejammed. The mech-
anism of spectrum management can help the military radios achieve information
superiority on the battlefield. Furthermore, from the soldiers’ perspective, cog-
nitive radio can help the soldiers to reach an objective through its situational
awareness.

• Heterogeneous wireless networks: From a user’s point of view, a cognitive radio
device can dynamically discover information about access networks, e.g. WiFi
and GSM, and makes decisions on which access network is most suitable for its
requirements and preferences. Then the cognitive radio device will reconfigure
itself to connect to the best access network. When the environmental conditions
change, the cognitive radio device can adapt to these changes. The information
as seen by the cognitive radio user is as transparent as possible to changes in the
communication environment.

2 Traditional Spectrum Sensing Algorithms

As a key technology in cognitive radio, spectrum sensing should sense spectrum
holes and detect the presence/absence of primary users. Themost efficient way to
sense spectrum holes is to detect active primary transceivers in the vicinity of cogni-
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tive radios. However, as some primary receivers are passive, such as TVs, some are
difficult to detect in practice. Tractional spectrum sensing techniques can be used to
detect the primary transmitters, i.e., matched filtering [7], energy detection [8], cy-
clostationary detection [9], and wavelet based detection [10]. The implementation
of these algorithms requires different conditions, and their detection performance
are correspondingly distinguished. The advantages and disadvantages of these algo-
rithms are summarized in Table 1.

Table 1 Summary of advantages and disadvantages of traditional spectrum sensing algorithms.

Spectrum sensing algorithm Advantages Disadvantages
Matched filter [7] Optimal performance Require prior information

Low computational cost of the primary user

Energy detection [8] Do not require prior information Poor performance for low SNR
Low computational cost Cannot differentiate users

Cyclostationary [9] Valid in slow SNR region Require partial prior information
Robust against interference High computational cost

Wavelet based detection [10] Valid for dynamic and widebandHigh sampling rate
spectrum sensing High computational cost

2.1 Matched filter

A block diagram of a matched filter is shown in Figure 3(a). Thematched filter
method is an optimal approach for spectrum sensing in the sense that it maximizes
the signal-to-noise ratio (SNR) in the presence of additivenoise [11]. Another ad-
vantage of the matched filter method is that it requires less observation time since
the high processing gain can be achieved by coherent detection. For example, to
meet a given probability of detection, onlyO(1/SNR) samples are required [7].
This advantage is achieved by correlating the received signal with a template to
detect the presence of a known signal in the received signal.However, it relies on
prior knowledge of the primary user, such as modulation type, and packet format,
and requires cognitive radio to be equipped with carrier synchronization and timing
devices. With more types of primary users, the implementation complexity grows
making the matched filter impractical.
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Fig. 3 Block diagrams for traditional spectrum sensing algorithms: (a) matched filter, (b) time
domain energy detection, (c) frequency domain energy detection, and (d) cyclostationary detection.

2.2 Energy detection

If the information about the primary user is unknown in cognitive radio, a commonly
used method for detecting the primary users is energy detection [8]. Energy detec-
tion is a non-coherent detection method that avoids the needfor complicated re-
ceivers required by a matched filter. An energy detector can be implemented in both
the time and the frequency domain. For time domain energy detection as shown
in Figure 3(b), a bandpass filter (BPF) is applied to select a center frequency and
bandwidth of interest. Then the energy of the received signal is measured by a mag-
nitude squaring device, with an integrator to control the observation time. Finally,
the energy of the received signal will be compared with a predetermined threshold
to decide whether the primary user is present or not. However, to sense a wide spec-
trum span, sweeping the BPF will result in a long measurementtime. As shown in
Figure 3(c), in the frequency domain, the energy detector can be implemented sim-
ilarly to a spectrum analyzer with a fast Fourier transform (FFT). Specifically, the
received signal is sampled at or above the Nyquist rate over atime window. Then
the power spectral density (PSD) is computed using an FFT. The FFT is employed
to analyze a wide frequency span in a short observation time,rather than sweeping
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the BPF in Figure 3(b). Finally, the PSD will be compared witha threshold,λ , to
decide whether the corresponding frequency is occupied or not.

The advantages of energy detection are that prior knowledgeof the primary users
is not required, and both the implementation and the computational complexity
are generally low. In addition, a short observation time is required, for example,
O(1/SNR2) samples are required to satisfy a given probability of detection [7].
Although energy detection has a low implementation complexity, it has some draw-
backs. A major drawback is that it has poor detection performance under low SNR
scenarios as it is a non-coherent detection scheme. Anotherdrawback is that it can-
not differentiate between the signal from a primary user andthe interference from
other cognitive radios, thus, it cannot take advantage of adaptive signal processing,
such as interference cancelation. Furthermore, noise level uncertainty can lead to
further performance loss. These disadvantages can be overcome by using two-stage
spectrum sensing technique, i.e. coarse spectrum sensing and fine spectrum sens-
ing. Coarse spectrum sensing can be implemented by energy detection or wideband
spectrum analyzing techniques. The aim of coarse spectrum sensing is to quickly
scan the wideband spectrum and identify some possible spectrum holes in a short
observation time. By contrast, fine spectrum sensing further investigates and anal-
ysis these suspected frequencies. More sophisticated detection techniques can be
used at this stage, such as cyclostationary detection described below.

2.3 Cyclostationary detection

A block diagram of cyclostationary detection is shown in Figure 3(d). Cyclostation-
ary detection is a method for detecting the primary users by exploiting the cyclo-
stationary features in the modulated signals. In most cases, the received signals in
cognitive radios are modulated signals, which in general exhibit built-in-periodicity
within the training sequence or cyclic prefixes. This periodicity is generated by the
primary transmitter so that the primary receiver can use it for parameter estimation,
such as channel estimation, and pulse timing [12]. The cyclic correlation function,
also called cyclic spectrum function (CSF), is used for detecting signals with a par-
ticular modulation type in the presence of noise. This is because noise is usually
wide-sense stationary (WSS) without correlation, by contrast, modulated signals
are cyclostationary with spectral correlation. Furthermore, since different modu-
lated signals will exhibit different characteristics, cyclostationary detection can be
used for distinguishing between different types of transmitted signals, noise, and
interference in low SNR environments. One of the drawbacks of cyclostationary
detection is that it still requires partial information of the primary user. Another
drawback is that the computational cost is high as the CSF is atwo-dimensional
function dependent on frequency and cyclic frequency [9].
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Fig. 4 Demonstration of the Fourier spectrum of interest. The PSD is smooth within each subband,
and exhibits discontinuities and irregularities with the adjacent subbands [10, 13].

2.4 Wavelet based spectrum sensing

In [10], Tian and Giannakis proposed a wavelet-based spectrum sensing approach.
It provides an advantage of flexibility in adapting to a dynamic spectrum. In this
approach, the PSD of the Fourier spectrum is modeled as a train of consecutive fre-
quency subbands, where the PSD is smooth within each subbandbut exhibits dis-
continuities and irregularities on the border of two neighboring subbands as shown
in Figure 4. The wavelet transform of the wideband PSD is usedto locate the singu-
larities of the PSD.

Let ϕ( f ) be a wavelet smoothing function, the dilation ofϕ( f ) is given by

ϕd( f ) =
1
d

ϕ
(

f
d

)
(1)

whered is a dyadic scale that can take values that are powers of 2, i.e. d = 2j. The
continuous wavelet transform (CWT) of the PSD is given by [10]

CWT{S( f )} = S( f )∗ϕd( f ) (2)

where “∗” denotes the convolution andS( f ) is the PSD of the received signal.
Then the first and second derivative of the CWT{S( f )} are used to locate the ir-

regularities and discontinuities in the PSD. Specifically,the boundaries of each sub-
bands are located by using the local maxima of the first derivative of CWT{S( f )},
and locations of the subbands are finally tracked by finding zero crossings in the sec-
ond derivative of CWT{S( f )}. By controlling the wavelet smoothing function, the
wavelet-based spectrum sensing approach has flexibility inadapting to the dynamic
spectrum.
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3 Wideband Spectrum Sensing Algorithms

As the discussions in previous section, spectrum sensing iscomposed of data acqui-
sition (sampling) process and decision-making process. For implementing wideband
data acquisition, cognitive radio needs some essential components, i.e., wideband
antenna, wideband RF front end, and high speed analog-to-digital converter (ADC).
Considering the Nyquist sampling theory, the sampling rateof ADC is required
to exceed 2W samples per second (known as Nyquist rate), ifW denotes the band-
width of the received signal (e.g., bandwidthW = 10 GHz). In [14], Yoonet al. have
shown that the−10 dB bandwidth of the newly designed antenna can be 14.2 GHz.
Hao and Hong [15] have designed a compact highly selective wideband bandpass
filter with a bandwidth of 13.2 GHz. By contrast, the development of ADC technol-
ogy is relatively behind. When we require an ADC to have a highresolution and a
reasonable power consumption, the achievable sampling rate of the state-of-the-art
ADC is 3.6 Gsps [16]. Thus, ADC becomes a bottleneck in such a wideband data
acquisition system. Even if there exists ADC with more than 20 Gsps sampling rate,
the real-time digital signal processing of 20 Gb/s of data could be very expensive.
This dilemma motivates researchers to look for technologies to reduce the sampling
rate while retainingW by using sub-Nyquist sampling techniques.

Sub-Nyquist sampling refers to the problem of recovering signals from partial
measurements that are obtained by using sampling rate lowerthan the Nyquist
rate [17]. Three important sub-Nyquist sampling techniques are: multi-coset sub-
Nyquist sampling, multi-rate sub-Nyquist sampling, and compressed sensing based
sub-Nyquist sampling.

3.1 Multi-coset Sub-Nyquist Sampling

Multi-coset sampling is a selection of some samples from a uniform grid, which
can be obtained when uniformly sampling signal at a rate offN greater than the
Nyquist rate. The uniform grid is then divided into blocks ofL consecutive samples,
and in each blockv(v < L) samples are retained while the rest of samples, i.e.L− v
samples, are skipped. A constant setC that describes the indexes of thesev samples
in each block is called a sampling pattern as

C = {t i}v
i=1, 0≤ t1 < t2 < · · · < tv ≤ L−1. (3)

As shown in Figure 5, the multi-coset sampling can be implemented by using
v sampling channels with sampling rate offN

L , where thei-th sampling channel is

offset by ti

fN
from the origin as below

xi[n] =

{
x( n

fN
), n = mL+ t i, m ∈ Z

0, otherwise
(4)
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Fig. 5 Block diagram of multi-coset sub-Nyquist sampling.

wherex(t) denotes the received signal to be sampled.
The discrete-time Fourier transform (DTFT) of the samples can be linked to the

unknown Fourier transform of signalx(t) by

Y( f ) = ΦX( f ) (5)

whereY( f ) denotes a vector of DTFT of these measurements fromv channels,X( f )
is a vector of the Fourier transform ofx(t), andΦ is the measurement matrix whose
elements are determined by the sampling patternC. The problem of wideband spec-
trum sensing is thus equivalent to recoveringX( f ) from Y( f ). In order to get a
unique solution from (5), every set ofv columns ofΦ should be linearly indepen-
dent. However, searching for this sampling pattern is a combinatorial problem.

In [18, 19], some sampling patterns are proved to be valid forreconstruction.
The advantage of multi-coset sampling is that the sampling rate in each channel isL
times lower than the Nyquist rate. Moreover, the number of measurements isvL lower
than the Nyquist sampling case. One drawback of the multi-coset sampling is that
accurate time offsets between sampling channels are required to satisfy a specific
sampling pattern. Another one is that the number of samplingchannels should be
sufficiently high [20].

3.2 Multi-rate Sub-Nyquist Sampling

An alternative model for compressing the wideband spectrumin the analog do-
main is a multirate sampling system as shown in Figure 6. Asynchronous multirate
sampling (MRS) and synchronous multirate sampling (SMRS) were used for recon-
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detected by an optical detector, amplified, and sampled by a low-rate ADC.

structing sparse multiband signals in [22] and [23], respectively. In addition, MRS
has been successfully implemented in experiments using an electro-optical system
with three sampling channels as described in [21]. Both systems employ three op-
tical pulsed sources that operate at different rates and at different wavelengths. The
received signal is modulated with optical pulses, which provided by an optical pulse
generator (OPG), in each channel. In order to reconstruct a wideband signal with an
18 GHz bandwidth, the modulated pulses are amplified, and sampled by an ADC at
a rate of 4 GHz in each channel.

In [22], the sampling channels of the MRS can be implemented separately with-
out synchronisation. However, reconstruction of the spectrum requires that each fre-
quency of the signal must be non-aliased in at least one of thesampling channels.
In [23] SMRS reconstructs the spectrum from linear equations, which relate the
Fourier transform of the signal to the Fourier transform of its samples. Using com-
pressed sensing theory, sufficient conditions for perfectly reconstructing the spec-
trum are obtained;v ≥ 2k (the Fourier transform of the signal isk-sparse) sampling
channels are required. In order to reconstruct the spectrumusing MRS with fewer
sampling channels, the spectrum to be recovered should possess certain properties,
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Fig. 7 Block diagram of the compressed sensing based wideband spectrum sensing algorithm.

e.g., minimal bands, and uniqueness. Nonetheless, the spectral components from
primary users may not possess these properties. Obviously,even though the multi-
rate sampling system has broad application, there is a long way to go to implement
it in a cognitive radio network because of its stringent requirements on both optical
devices and the number of sampling channels.

3.3 Compressed sensing based sub-Nyquist sampling

In the classic work [13], Tian and Giannakis introduced compressed sensing theory
to realize wideband spectrum sensing by exploiting the sparsity of radio signals. The
technique takes advantage of using fewer samples closer to the information rate,
rather than the inverse of the bandwidth, to perform wideband spectrum sensing.
After reconstruction of the wideband spectrum, wavelet-based edge detection was
used to detect the wideband spectrum as shown in Figure 7.

Let x(t) represent a wideband signal received at cognitive radio. Ifx(t) is sampled
at the Nyquist sampling rate, the sequence vector, i.e.x (x ∈ CN), will be obtained.
The Fourier transform of the sequence,X = Fx, will therefore be alias-free, where
F denotes the Fourier matrix. When the spectrum,X, is k-sparse (k ≪ N), which
meansk out of N values inX are not neglectable,x(t) can be sampled at a sub-
Nyquist rate while its spectrum can be reconstructed with a high probability. The
sub-sampled/compressed signal,y ∈ CM (k < M ≪ N), is linked to the Nyquist
sequencex by [13],

y = Φx (6)

whereΦ ∈ CM×N is the measurement matrix, which is a selection matrix that ran-
domly choosesM columns of the size-N identity matrix. Namely,N −M samples
out of N samples are skipped. The relationship between the spectrumX and the
compressed sequencey is given by [13]

y = ΦF−1X (7)

whereF−1 denotes the inverse Fourier matrix.
ApproximatingX from y in (7) is a linear inverse problem and is NP-hard. The

basis pursuit (BP) [24] algorithm can be used to solveX by linear programming
[13]:
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Fig. 8 Block diagram for the analog-to-information converter [26]. The received signal,x(t), is
randomly demodulated by a pseudorandom chipping sequence,integrated by an accumulator, and
sampled at a sub-Nyquist rate.

X̃ = arg min‖X‖1, s. t. y = ΦF−1X. (8)

After reconstructing the full spectrumX, the PSD is calculated using̃X . Then
the wavelet detection approach can be used to analyze the edges in the PSD. Al-
though less measurements are used for characterizing the wideband spectrum, the
requirement of high sampling rate on ADC is not relaxed. By contrast, in [25], Polo
et al. suggested using an analog-to-information converter (AIC)model (also known
as random demodulator, [26]) for compressing the wideband signal in the analog
domain. The block diagram of AIC is given in Figure 8.

A pseudorandom number generator is used to produce a discrete-time sequence
ε0,ε1, · · · , called a chipping sequence, the number of which takes values of±1 with
equal probability. The waveform should randomly alternateat or above the Nyquist
rate, i.e.ϖ ≥ 2W , whereW is the bandwidth of signal. The output of the pseudo-
random number generator, i.e.pc(t), is employed to demodulate a continuous-time
input x(t) by a mixer. Then an accumulator sums the demodulated signal for 1/w
seconds, and the filtered signal is sampled at a sub-Nyquist rate ofw. This sampling
approach is called integrate-and-dump sampling since the accumulator is reset after
each sample is taken. The samples acquired by the AIC,y ∈ Cw, can be related to
the received signal,x ∈ Cϖ , by

y = Φx (9)

whereΦ ∈ Cw×ϖ is the measurement matrix describing the overall action of the
AIC system on the input signalx. The signalx can be identified by solving the
convex optimization problem,

x̃ = arg min‖x‖1, s. t. y = Φx, (10)

by BP or other greedy pursuit algorithms. The PSD of the wideband spectrum can
be estimated using the recovered signalx̃, followed by a hypothesis test on the PSD.
Alternatively, the PSD can be directly recovered from the measurements using com-
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Fig. 9 Block diagram for the modulated wideband converter [27]. Ineach channel, the received
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sub-Nyquist rate1
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pressed sensing algorithms [25]. Although the AIC bypassesthe requirement for a
high sampling rate ADC, it leads to a high computational complexity as the huge-
scale of the measurement matrix. Furthermore, it has been identified that the AIC
model can easily be influenced by design imperfections or model mismatches [27].

In [27], Mishali and Eldar proposed a parallel implementation of the AIC model,
called modulated wideband converter (MWC), as shown in Figure 9. The key dif-
ference is that in each channel the accumulator for integrate-and-dump sampling
is replaced by a general low-pass filter. One of the benefits ofintroducing parallel
structure is that the dimension of the measurement matrix isreduced making the re-
construction easier. Another benefit is that it provides robustness to noise and model
mismatch. On the other hand, the implementation complexityincreases as multiple
sampling channels are involved. An implementation issue ofusing MWC is that
the storage and transmission of the measurement matrix mustbe considered when
it is used in a distributed cognitive radio network under a data fusion collaborative
scheme.
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4 Adaptive Compressed Sensing Framework for Wideband
Spectrum Sensing

The compressed sensing technologies require that the signal to be sampled should
be sparse in a suitable basis. If it is sparse, the signal can be reconstructed from
partial measurements by using some recovery algorithms, e.g., orthogonal matching
pursuit (OMP) or compressive sampling matching pursuit (CoSaMP)[28]. Given the
low spectral occupancy, the wideband signal that is received by cognitive radios can
be assumed to be sparse in the frequency domain [13]. If this sparsity level (de-
noted byk) is known, we can choose an appropriate number of measurementsM to
secure the quality of spectral recovery, e.g.,M = C0k log(N/k), whereC0 denotes
a constant andN denotes the number of measurements when using the Nyquist
rate [13]. However, in order to avoid incorrect spectral recovery in the cognitive ra-
dio system, traditional compressed sensing approaches must pessimistically choose
the parameterC0, which results in excessive number of measurements. As shown
in Fig. 10, consideringk = 10, traditional compressed sensing approaches tend to
chooseM = 37%N measurements for achieving a high successful recovery rate. We
note that, with 20%N measurements, we can still achieve 50% successful recov-
ery rate. If these 50% successful recovery cases can be identified, we could save
the number of measurements. In addition, in a practical cognitive radio system, the
sparsity level of the instantaneous spectrum is often unknown or difficult to estimate
because of either the dynamic activities of primary users orthe time-varying fading
channels between the primary users and cognitive radios. Due to this sparsity level
uncertainty, traditional compressed sensing approaches should further increase the
number of measurements. For example, in Fig. 10, ifk is known to be 10≤ k ≤ 20,
traditional compressed sensing approaches would selectM = 50%N, which does not
fully exploit the advantages of using compressed sensing technologies for wideband
spectrum sensing. Further, the sparsity level uncertaintycould also result in early or
late termination of greedy recovery algorithms. Due to the effects of under-fitting or
over-fitting caused by the early or late iteration termination, traditional compressed
sensing recovery algorithms will lead to unfavorable spectral recovery quality.

To address these challenges, adaptive compressed sensing approach should be
adopted for reconstructing the wideband spectrum by using an appropriate number
of compressive measurements without prior knowledge of theinstantaneous spectral
sparsity level. Specifically, the adaptive framework divides the spectrum sensing in-
terval into several equal-length time slots, and performs compressive measurements
in each time slot. The measurements are then partitioned into two complementary
subsets, performing the spectral recovery on the training subset, and validating the
recovery result on the testing subset. Both the signal acquisition and the spectral
estimation will be terminated if the designedℓ1 norm validation parameter meets
certain requirements. In the next section, we will introduce the adaptive compressed
sensing approach in detail for addressing wideband spectrum sensing issues in cog-
nitive radios.
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Fig. 10 An example of a traditional compressed sensing system, where the successful recovery rate
varies when the number of measurements and the sparsity level vary. In simulations, considering
N = 200, we varied the number of measurementsM from 20 to 180 in eight equal-length steps. The
sparsity levelk was set to between 1 andM. The measurement matrix was assumed to be Gaussian.
The figure was obtained with 5000 trials of each parameter setting.

4.1 Problem Statement

Suppose that an analog primary signalx(t) is received at a cognitive radio, and
the frequency range ofx(t) is 0∼ W (Hz). If the signalx(t) were sampled at the
sampling ratef (Hz) in the observation timeτ (seconds), a signal vectorx ∈ CN×1

would be obtained, whereN denotes the number of samples and can be written as
N = f τ. Without loss of generality, we assume thatN is an integer number. However,
here we consider that the signal is sampled at sub-Nyquist rate as enhanced by
compressed sensing.

The compressed sensing theory relies on the fact that we can represent many sig-
nals using only a few non-zero coefficients in a suitable basis or dictionary. Such
signals may therefore be acquired by sub-Nyquist sampling,which leads to fewer
samples than predicted on the basis of Nyquist sampling theory. The sub-Nyquist
sampler, e.g., the random demodulator [26, 29, 30], will generate a vector of com-
pressive measurementsy ∈ CM×1 (M ≪ N) via random projections of the signal
vectorx. Mathematically, the compressive measurement vectory can be written as

y = Φx (11)
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Fig. 11 Diagram of compressed sensing based spectrum sensing approach when using the spectral
domain energy detection approach.

wherex denotes the signal vector obtained by using sampling rate higher than or
equal to the Nyquist rate (i.e.,f ≥ 2W ), andΦ denotes anM ×N measurement
matrix. Of course, there is no hope to reconstruct an arbitrary N-dimensional signal
x from partial measurementsy. However, if the signalx is k-sparse (k < M ≪ N) in
some basis, there do exist measurement matrices that allow us to recoverx from y
using some recovery algorithms.

Based on the fact of spectral sparseness in a cognitive radiosystem [13], the
compressed sensing technologies can be applied for signal acquisition at cognitive
radios. A block diagram of a typical compressed sensing based spectrum sensing
infrastructure is shown in Fig. 11. The goal is to reconstruct the Fourier spectrum
X = Fx from partial measurementsy, and to perform spectrum sensing based on the
reconstructed spectrum̂X . Due to the advantages of short running time and good
sampling efficiency, greedy recovery algorithms are often used in some practical
scenarios where the signal processing should be performed on a near real-time basis
in addition to computational capability constraints.

After the spectral recovery, spectrum sensing approaches can be performed by
using the reconstructed spectrumX̂ . A typical spectrum sensing approach is spectral
domain energy detection as the discussions in Section 2. As depicted in Fig. 11, this
approach extracts the reconstructed spectrum in the frequency range of interest, e.g.,
∆ f , and then calculates the signal energy in the spectral domain. The output energy
will be compared with a detection threshold (denoted byλ ) to decide whether the
corresponding frequency band is occupied or not, i.e., choosing between hypotheses
H1 (presence of primary users) andH0 (absence of primary users).

It can be easily understood that the performance of such an infrastructure will
highly depend on the recovery quality of the Fourier spectrum X. From the com-
pressed sensing theory, we know that the recovery quality isdetermined by: the
sparsity level, the choice of measurement matrix, the recovery algorithm, and the
number of measurements. The spectral sparsity level in a cognitive radio system
is mainly determined by the activities of primary users within a specific frequency
range and the medium access control (MAC) of the cognitive radios. One elegant
metric for evaluating the suitability of a chosen measurement matrix is the restricted
isometry property (RIP) [31]. For a comprehensive understanding of RIP and mea-
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Fig. 12 Frame of periodic spectrum sensing in cognitive radio networks.

surement matrix design, we refer the reader to [32] and references therein. In the
following, we will concentrate on addressing: the choice ofthe number of measure-
ments and the design of the recovery algorithm. We will discuss an adaptive sensing
framework enabling us to gradually acquire spectral measurements. Both the signal
acquisition and the spectral estimation will be terminatedwhen certain halting cri-
terions are met, thereby avoiding the problems of excessiveor insufficient numbers
of compressive measurements.

4.2 System Description

Consider a cognitive radio system using a periodic spectrumsensing infrastructure
in which each frame is comprised of a spectrum sensing time slot and a data trans-
mission time slot, as shown in Fig. 12. The length of each frame isA (seconds), and
the duration of spectrum sensing isT (0< T < A). The remaining timeA−T is used
for data transmission. Further, we assume that the spectrumsensing durationT is
carefully chosen so that the symbols from primary users, andthe channels between
the primary users and cognitive radios are quasi-stationary. We propose to divide
the spectrum sensing durationT into P equal-length mini-time slots, each of which
has lengthτ = T

P , as depicted in Fig. 12. As enforced by protocols, e.g., at the MAC
layer [33], all cognitive radios can keep quiet during the spectrum sensing interval.
Therefore, the spectral components of the Fourier spectrumX = Fx arise only from
primary users and background noise. Due to the low spectral occupancy [13], the
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Table 2 Compressed Adaptive Sensing (CASe) Framework

Input: Sensing durationT , N, noise varianceδ 2, thresholdϖ
accuracyε in the noiseless case, accuracyε in the noisy case.

1. Initialize:
Divide T into P time slots, each has lengthτ = T

P , indexp = 0.
2. While the halting criterion is false andp < P, do

a). Incrementp by 1.
b). Perform compressive sampling in the time slotp using ratefs.
c). If p = 1, partition the measurement vector into:

the training sety1 and testing setV as in (12)-(13).
d). Concatenate the training sets from the time slots 1, · · · , p

to form Yp as in (13).
e). Estimate the spectrum fromYp using spectral recovery algorithm

resulting in the spectral estimateX̂p.
f). Calculate the validation parameter usingV andΨ :

ρp =
‖V−ΨF−1X̂p‖1

r .
3. Check and make decision:

If the halting criterion is true
a). Terminate the signal acquisition.
b). Perform spectrum sensing using the reconstructed spectrum X̂p.
c). Choose un-occupied bands, and start the data transmission.

Else if p = P
a). Terminate the signal acquisition.
b). Report its reconstruction is not trustworthy.
c). Increasefs and wait for next spectrum sensing frame.

end

Halting Criterion:

√
πN
2 ρp

1−ε ≤ ϖ , in the noiseless measurement case.
|ρp −

√ π
2 δ | ≤ ε , in the noisy measurement case.

Fourier spectrumX can be assumed to bek-sparse, which means it consists only
of k largest values that are not negligible. The spectral sparsity level k is unknown
except thatk ≤ kmax, wherekmax is a known parameter. This assumption is reason-
able because the maximal occupancy of the spectrum can be estimated by long-term
spectral usage measurements.

For simplicity, we name the adaptive compressed sensing-based wideband spec-
trum sensing approach as: compressed adaptive sensing (CASe). The aim of CASe
is to gradually acquire compressive measurements, reconstruct the wideband spec-
trumX, and terminate the signal acquisition if and only if the current spectral recov-
ery performance is satisfactory. The work procedure of CASeis shown in Table 2.
We assume that cognitive radio performs compressive measurements using the same
sub-Nyquist sampling ratefs ( fs < 2W ) in all P mini time slots. In each time slot, an
m-length measurement vector would be obtained, wherem = fsτ = fsT

P is assumed
to be an integer. Without loss of generality, the measurement matrices ofP time slots
are assumed to follow the same distribution, e.g., the standard normal distribution,
or the Bernoulli distribution with equal probability of±1. We partition the mea-
surement set of the first time slot into two complementary subsets, i.e., validating
the spectral recovery result using the testing subsetV (V ∈ Cr×1, 0< r < m) which
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is given by
V = ΨF−1X (12)

and performing the spectral recovery using the training subsety1 (y1 ∈ C(m−r)×1),
whereΨ ∈ Cr×N denotes the testing matrix. The measurements of other time slots,
i.e., yi, ∀i ∈ [2,P], are used only as the training subsets for spectral recovery. We
concatenate the training subsets of allp time slots as

Yp
△
=




y1

y2
...

yp


 = Φ pF−1Xp (13)

whereYp ∈ C(pm−r)×1 denotes the concatenated measurement vector,Φ p denotes
the measurement matrix afterp time slots, andXp denotes the signal spectrum. It
should be noted thatΦ p and the testing matrixΨ are chosen to be different but have
the same distribution, and the signal spectrumXp is always noisy, e.g., due to the
receiver noise. We then gradually estimate the spectrum from Y1,Y2, · · · ,Yp using
a certain compressed sensing recovery algorithm, leading to a sequence of spectral
estimateŝX1, X̂2, · · · , X̂p.

4.3 Acquisition Termination Metric

We hope that the signal acquisition procedure can be terminated if we find a good
spectral approximation̂Xp that makes the spectral recovery error‖X− X̂p‖2 suffi-
ciently small. The remaining spectrum sensing time slots, i.e., p + 1, · · · ,P, can be
used for data transmission. If this target can be achieved, we could not only improve
the cognitive radio system throughput (due to the longer data transmission time), but
could also obtain measurement savings, leading to both energy and computational
savings. However, the spectral recovery error‖X− X̂p‖2 is typically not known as
X is unknown under the sub-Nyquist sampling rate. Hence, whenusing traditional
compressed sensing approaches, we do not know when we shouldterminate the sig-
nal acquisition procedure. In this chapter, we propose to use the following validation
parameter as a proxy for‖X− X̂p‖2:

ρp
△
=

‖V−ΨF−1X̂p‖1

r
(14)

and terminate the signal acquisition if the validation parameterρp is smaller than a
predetermined threshold. This is based on the following observation:

Theorem 1: Assume thatΦ1, · · · ,ΦP andΨ follow the same distribution, i.e.,
either the standard normal distribution or the Bernoulli distribution with equal prob-
ability of ±1. Letε ∈ (0, 1

2), ξ ∈ (0,1), andr = Cε−2 log 4
ξ (C is a constant). Then
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usingV for testing the spectral estimatêXp, the validation parameterρp satisfies:

Pr

[
(1− ε)‖X− X̂p‖2 ≤

√
πN
2

ρp ≤ (1+ ε)‖X− X̂p‖2

]
≥ 1− ξ (15)

whereξ can also be written asξ = 4exp(− rε2

C ).
The proof of Theorem 1 is given in Appendix A.
Remark 1: In Theorem 1, we can see that, with either higherε or greaterr,

we have higher confidence for estimating the actual spectralrecovery error‖X−
X̂p‖2. Fig. 13(a) shows the influence of using different number of measurements for
testing the spectral estimate when the number of time slots increases. The spectral
occupancy is assumed to be 6%, which means the spectral sparsity level k = 6%N =
120 whereN = 2000. It can be seen that with more testing data, the validation result
is more trustworthy. Furthermore, we can find that even withr = 5 measurements for
testing, the validation result is still very close to the actual recovery error. The choice
of parameterC in Theorem 1 depends on the concentration property of random
variables in the measurement matrixΨ . For a goodΨ , e.g., the measurement matrix
with random variables following either the Gaussian or Bernoulli distribution,C
could be a small number.

Remark 2: Theorem 1 can be used to provide tight upper and lower bounds on
the unknown recovery error‖X− X̂p‖2 by using (15) such that

√
πN
2 ρp

1+ ε
≤ ‖X− X̂p‖2 ≤

√
πN
2 ρp

1− ε
. (16)

Fig. 13(b) compares the actual recovery error‖X− X̂p‖2 and the validation param-

eter
√

πN
2 ρp when the spectral sparsity level varies. It is evident that the validation

parameter can closely fit the unknown actual recovery error.The upper and lower
bounds on the actual recovery error that we obtained in (16) can correctly predict
the trend of the actual recovery error even if eitherp or k vary. Fig. 13(b) also il-
lustrates that the lower the sparsity level, the fewer time slots (thereby the fewer
compressive measurements) are required for reconstructing the spectrum. When the
spectral occupancy is 12% (i.e.,k = 12%N = 240), the CASe framework requires
p = 7 mini-time slots, i.e.,M = pm = 1400 measurements in total. On the other
hand, whenk = 100, onlyp = 3 time slots andM = pm = 600 measurements are
required. The remaining time slots can be used for data transmission, which can
therefore lead to higher throughput than the cognitive radio system using traditional
compressed sensing approaches. If we require‖X− X̂p‖2 (unknown) to be less than
a tolerable recovery error thresholdϖ , we can let the upper bound on (16) to be a
proxy for‖X− X̂p‖2. As shown in Table 2, we choose the upper bound on (16) as the
signal acquisition termination metric in the noiseless case. If it is less than or equal

to the thresholdϖ , i.e.,‖X− X̂p‖2 ≤
√

πN
2 ρp

1−ε ≤ ϖ , the signal acquisition can be ter-
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Fig. 13 Comparison of the actual recovery error and the proposed validation parameter when the
number of mini time slots increases: (a) different number ofmeasurements for validation when
the spectral sparsity levelk = 120, and (b) different spectral sparsity levels whenr = 50. It was
assumed that there is no measurement noise in the compressive measurements. The upper and
lower bounds on the actual recovery error are given in (16).
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minated. This approach, to some extent, decreases the probabilities of excessive or
insufficient numbers of measurements.

4.4 Noisy compressed adaptive sensing

Due to either the quantization error of ADC or the imperfect design of sub-Nyquist
sampler, the measurement noise may exist when performing compressive measure-
ments. In this section, theℓ1 norm validation approach is further studied to fit the
CASe framework in the noisy case. After that, we present a sparsity-aware recovery
algorithm that can correctly terminate greedy iterations when the spectral sparsity
level is unknown and the effects of measurement noise are notnegligible.

In the noisy signal measurement case, the concatenated training setYp and the
testing subsetV can be written as

Yp = Φ pF−1Xp + n (17)

and
V =ΨF−1X+ n (18)

respectively, where the measurement noisen is additive noise (added to the real
compressed signal after the random projection) generated by the signal measure-
ment procedure, i.e., signal quantization. The measurement noise can be modeled
by circular complex additive white Gaussian noise (AWGN). Without loss of gener-
ality, we assume thatn has an upper bound ¯n, and has zero mean and known variance
δ 2, i.e.,n ∼ CN (0,δ 2). For example, if the measurement noisen is generated by
the quantization noise of a uniform quantizer, the noise varianceδ 2 can be estimated
by ∆2/12 andn ≤ n̄ = ∆ , where∆ denotes the cell width.

If ρp is close enough to
√π

2 δ , the signal acquisition procedure can be safely
terminated. This observation is due to the following theorem:

Theorem 2: Letε > 0,δ > 0,ρ ∈ (0,1), ν ≥
√

2/π
δ n̄−1, andr = ln

(
2
ρ

)
3(4−π)δ 2+

√
2πεδν

3ε2 .

If the best spectral approximation exists within the sequence of spectral estimates
X̂1, · · · , X̂P, then there exists a validation parameterρp that satisfies

Pr

[√
π
2

δ − ε ≤ ρp ≤
√

π
2

δ + ε
]

> 1−ρ , (19)

whereρ is given byρ = 2exp
(
− 3rε2

3(4−π)δ 2+
√

2πεδν

)
.

The proof of Theorem 2 is given in Appendix B.
Remark 3: It is worthwhile to note that Theorem 2 addresses the problemof

finding the best spectral approximation, i.e.,X̂p = X⋆, that minimizes‖X− X̂p‖2

among all possible spectral estimates in the noisy case. This is different from The-
orem 1, which focuses on finding a satisfactory spectral estimate X̂p that makes
‖X− X̂p‖2 ≤ ϖ in the noiseless case. Using Theorem 1, we should carefully choose
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the tolerable recovery error thresholdϖ in order to avoid excessive or insufficient
numbers of measurements. In addition, in Theorem 1, the relation between the tol-
erable recovery error thresholdϖ and the probability of finding the best spectral
approximation is unknown. By contrast, Theorem 2 shows thatif there exists a best
spectral approximation, the corresponding validation parameter should be within a
certain small range with a probability greater than 1−ρ . Thus, if the result of The-
orem 2 is used as the signal acquisition termination metric,the issues of excessive
or insufficient numbers of measurements can be solved.

Remark 4: If the best spectral approximation exists, the probabilityof finding it
exponentially increases as the size of testing set (i.e.,r) increases. It means that if we
monitorρp, we have a higher probability of finding the best spectral approximation
when using more measurements for validation. However, we should note that there
is a trade off between the size of the training set and the sizeof the testing set for a
fixed sub-Nyquist sampling rate. On the one hand, a smallerr (i.e., larger training
set for a fixedm) could result in better spectral recovery, while on the other hand, the
probability of finding the best spectral approximation decreases asr becomes small.
In addition, for a fixed degree of confidence 1−ρ , we face a trade off between the
accuracyε and the size of the testing setr, as shown in Theorem 2. At the expense
of the accuracyε (i.e., largerε), r can be small. We should also emphasize that, as
we can see in (34), linear increase of the standard deviationδ will lead to quadratic
growth in the size of the testing set. This is the reason why weshould carefully
consider the effects of measurements noise in the validation approach.

4.5 Sparsity-Aware Recovery Algorithm

As the above discussions indicated, Theorem 2 can be used foridentifying the best
spectral approximation toX from the spectral estimate sequenceX̂1, X̂2, · · · , X̂p,
which is calculated by increasing the number of measurements in the proposed
CASe framework. We note that Theorem 2 can also be used for preventing over-
fitting or under-fitting in greedy recovery algorithms. Greedy recovery algorithms
iteratively generate a sequence of estimatesX̂1

p , X̂2
p , · · · , X̂ t

p, where the best spectral
estimate may exist under certain system parameter choices.For example, the OMP
algorithm chooses one column from the measurement matrix ata time for recon-
structingX from y. After t = k iterations, thek-sparse vector̂X k will be returned as
an approximation toX. Note that OMP requires the sparsity levelk as an input, and
such an input is commonly needed by most greedy recovery algorithms. However,
the sparsity levelk of the spectrum in the cognitive radio system is often unknown,
and therefore traditional greedy compressed sensing algorithms will result in either
early or late termination of greedy algorithms. Then the problems of under-fitting
and over-fitting arise, leading to inferior spectral recovery performance. In order
to reconstruct the full spectrum in the case of unknownk, we propose to use the
testing set for validating the spectral estimate sequenceX̂1

p , X̂2
p , · · · , X̂ t

p, and termi-
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Table 3 Sparsity-Aware OMP Algorithm

Input: training setYp, testing setV, measurement matrixΦ p,
testing matrixΨ , noise varianceδ 2, accuracyε , kmax.

1. Initialize:
Index setΛ0 = /0, residualR0

p = Yp, and iteration indext = 0.
Let ρ t

p = C1 (∀t ∈ [0,kmax]), whereC1 is a large constant.
2. While |ρ t

p −
√ π

2 δ | > ε andt < kmax, do
a). Incrementt by 1.
b). Find the indexλ t that solves the optimization problem:

λ t = arg maxj=1,···,N | < Rt−1
p ,Φ j

p > |.
c). Augment the index setΛ t = Λ t−1∪{λ t}, and revise

the matrixΘ t
p = Φ p(Λ t ) by only selecting the column

index belongs toΛ t , other columns are all zeros.
d). Solve a least squares problem:

X̂ t
p = arg minX ‖Yp −Θ t

pF−1X‖2.
e). Calculate the validation parameter usingV andΨ :

ρ t
p =

‖V−ΨF−1X̂ t
p‖1

r .
f). Update residual:

Rt
p = Yp −Φ pF−1X̂ t

p.
Output: X̂p = arg minX̂ t

p
|ρ t

p −
√ π

2 δ |, ∀ t ∈ [1,kmax]

nate the iterations if the current validation parameter satisfies the conditions given
in Theorem 2.

As shown in Table 3, we present a sparsity-aware OMP algorithm. One important
advantage of the proposed algorithm is that it does not require the instantaneous
spectral sparsity levelk, but requires instead its upper boundkmax which can be
easily known. In each iteration, the column indexλ t ∈ [1,N] that has the maximum
correlation between the residual and the measurement matrix will be found, and
be merged with the previously computed spectral support to form a new spectral
supportΛ t . After that, the full spectrum is recovered by solving a least squares

problem as shown in the step 2-d) of Table 3. Note thatΘ t
p
△
= Φ p(Λ t ) is the sub-

matrix obtained by only selecting the columns whose indicesare withinΛ t in the
matrix Φ p, while other columns are set to all zeros. For a spectral estimate X̂ t

p,
we validate it by using the validation parameterρ t

p, which can be calculated by
using the testing setV and the spectral estimatêX t

p as shown in the step 2-e) of
Table 3. The residual is then updated. We emphasize that the proposed algorithm
monitors the validation parameterρ t

p, instead of the residual‖Rt
p‖2 ≤ ϖ as used in

the traditional greedy recovery algorithms. Based on Theorem 2, if the best spectral
estimate is included in the spectral estimate sequenceX̂1

p , X̂2
p , · · · , X̂ t

p, the probability

of finding it will be greater than 1−2exp
(
− 3rε2

3(4−π)δ 2+
√

2πεδν

)
. In other words, the

probability of under-/over-fitting is less than or equal to 2exp
(
− 3rε2

3(4−π)δ 2+
√

2πεδν

)
,

and becomes smaller asr increases.
For the proposed spectral recovery algorithm, there is a keyparameter we need

to know, i.e.,ε. The following quadratic equation regardingε holds by using (33):
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Fig. 14 The effects of measurement noise on both the actual recoveryerror and the proposed
validation parameter when the SMNR varies. The spectral sparsity level was set tok = 120.

r · ε2−
√

2π
3

ln

(
2
ρ

)
δν · ε − (4−π) ln

(
2
ρ

)
δ 2 = 0. (20)

It can be easily determined that the discriminant of the above quadratic equation is
positive, so there are two distinct real roots. The following positive root can be used
to determineε:

ε =




√
2π ln

(
2
ρ

)
δν ± δ

√
2π ln2

(
2
ρ

)
ν2 +36(4−π) ln

(
2
ρ

)
r

6r




+

(21)

where[x]+ denotes max(x,0).

4.6 Numerical Results

In our simulations, we adopt the wideband analog signal model in [27] and let the
received signalx(t) at a cognitive radio to be of the form
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x(t) =
Nb

∑
l=1

√
ElBl ·sinc(Bl(t −α)) ·cos(2π fl(t −α))+ z(t) (22)

where sinc(x) = sin(πx)
πx , α denotes a random time offset smaller thanT/2, z(t) is

AWGN (i.e.,z(t) ∼N (0,1)), andEl is the received power for the subbandl at cog-
nitive radio. The received signalx(t) consists ofNb = 8 non-overlapping subbands.
Thel-th subband is in the frequency range of [fl − Bl

2 , fl +
Bl
2 ], where the bandwidth

Bl = 10∼ 30 MHz andfl denotes the center frequency. The center frequency of the
subbandl is randomly located within[Bl

2 ,W − Bl
2 ] (i.e., fl ∈ [Bl

2 ,W − Bl
2 ]), where

the overall signal bandwidthW = 2 GHz. Therefore, the Nyquist rate isf = 2W =

4 GHz, and the spectral occupancy (i.e.,∑8
l=1Bl
W ) is a random number between 4%

and 12%. We emphasize that the spectral occupancy of 4%∼ 12% in our simula-
tions is very close to the spectral measurements in New York City as noted above.
The received signal-to-noise ratios (SNRs) of these 8 active subbands are random
natural numbers between 5 dB and 25 dB. The spectrum sensing duration is cho-
sen to beT = 5 µs, during which the symbols from primary users and the channels
between the primary users and cognitive radios are assumed to be quasi-stationary.
We then divideT into P = 10 mini time slots, each of which hasτ = T

P = 0.5 µs.
If the received signalx(t) were sampled at the Nyquist rate, the number of Nyquist
samples in each time slot would beN = 2Wτ = 2,000. It can be calculated that
the spectral sparsity levelk is in the range of 4%×N = 80≤ k ≤ 12%×N = 240.
In the proposed framework, rather than using the Nyquist sampling rate, we adopt
the sub-Nyquist sampling ratefs = 400 MHz; thus, the number of measurements
in each time slot ism = fsτ = 200. In other words, the undersampling fraction in
each time slot ism/N = 10%. For the purpose of testing/validation,r = 50 mea-
surements in the first time slot are reserved, while the remaining measurements are
used for reconstructing the spectrum. The measurement matrices, i.e.,Φ p andΨ ,
follow the standard normal distribution with zero mean and unit variance. Due to
the imperfect design of signal measurement devices, the measurement noise may
exist. In the noisy case, the measurement noise is assumed tobe circular complex
AWGN, i.e.,n ∼ CN (0,δ 2). As the measurement noise in this chapter is mainly
due to the signal quantization in the ADCs, we set the signal-to-measurement-noise
ratios (SMNR) to be 50 dB and 100 dB. This is because the SMNR ofthe uniform
quantization increases 6 dB for each one-bit; thus, the SMNRof 8-bit quantization
is 48 dB and the SMNR of 16-bit quantization is 96 dB, which areapproximately
50 dB and 100 dB.

Firstly, we consider the effects of measurement noise to both the spectral recov-
ery quality and the validation parameter. In Fig. 14, the spectral sparsity level is set
to k = 120. We can see that, in either the noiseless measurement case or the noisy
measurement case, the proposed CASe framework can reconstruct the spectrum us-
ing 6 time slots. The spectral recovery quality becomes worse when the measure-
ment noise level increases. In the noiseless case, the proposed validation parameter
can closely fit the actual recovery error. By contrast, thereis a gap between the actual
recovery error and the validation result when the measurement noise exists. This is
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Fig. 15 Comparison of the validation parameter and the actual recovery error when the best spec-
tral approximation occurs. The dash line denotes the predicted validation value, i.e.,

√ π
2 δ (scaled

standard deviation), as used in Theorem 2.

because, on the one hand, the actual recovery error‖X− X̂p‖2 can be very small,
e.g., 10−14 in the case of best spectral approximation, on the other hand, the vali-
dation parameter is mainly determined by the noise level as shown in Theorem 2.
This implies that the effects of measurement noise should becarefully considered
even if X̂p is the best spectral approximation. In Fig. 15, it is seen that when the
best spectral approximation occurs (i.e., the actual recovery error is small enough),
the validation parameter is very close to the scaled noise standard deviation, i.e.,√π

2 δ . This observation validates the results of Theorem 2. If thevalidation method
is used for designing the termination metric of the signal acquisition, such as in the
algorithm given in Table 2, the problems of insufficient or excessive numbers of
measurements can be solved.

Secondly, Fig. 16 analyzes the spectral recovery performance when using differ-
ent compressed sensing approaches. In these simulations, in order to find the best
spectral approximation with high confidence, the accuracy parameterε in (19) is set
to δ/2 and the number of testing measurements isr = 50. As depicted in Fig. 16(a),
the proposed CASe framework can adaptively adapt its numberof measurements to
the unknown spectral sparsity levelk. The corresponding spectral recovery perfor-
mance is shown in Fig. 16(b), where the spectral recovery mean square error (MSE)
of different compressed sensing approaches is given. We cansee that, even with the
total number of measurementsM = 1300, the performance of the traditional com-
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Fig. 16 Performance analysis of spectral recovery when using different compressed sensing ap-
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mean square error. The SMNR was set to 100 dB.
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Fig. 17 Examples of the reconstructed spectrum when using different recovery algorithms. The
spectral sparsity level was assumed to bek = 150, with the total number of measurementsM = 800.
The received SNRs of these 8 active subbands were set to random natural numbers between 5 dB
and 25 dB. The SMNR was set to 50 dB.

pressed sensing system is inferior to that of the proposed CASe framework as the
traditional compressed sensing system cannot deal with thecase ofk ≥ 200. Note
that, if we assume that the spectral sparsity levelk has a uniform distribution be-
tween 80 and 240, the average number of measurements required by CASe is 900.
Compared to the traditional compressed sensing system withM = 900, it is obvious
that the CASe framework has much lower MSE for most ofk ∈ [80,240].

Thirdly, Fig. 17 shows examples of the original spectrum andthe reconstructed
spectrum when using different spectral recovery algorithms, i.e., OMP and the pro-
posed algorithm. We can see that the recovery performance ofthe proposed algo-
rithm is superior to that of the traditional OMP algorithm. As the sparsity level is
unknown and has the range of 80≤ k ≤ 240, if the OMP algorithm is used, the
problems of either under-fitting (i.e., iteration is terminated earlier ask is under-
estimated) or over-fitting exist. As the problem of under-fitting could lead to the
missed detection of primary users which may cause harmful interference to primary
users, the traditional OMP algorithm should prevent the under-fitting from occur-
ring, and tends to choose more number of iterations. In the case of over-fitting, the
traditional OMP algorithm will result in a “noisy” reconstructed spectrum as de-
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picted in Fig. 17(c). With the aid of the testing set, the proposed approach has an
improved recovery performance as shown in Fig. 17(d). Compared with the OMP al-
gorithm, the proposed algorithm provides better spectral estimate, and is much more
similar to the best spectral approximation in Fig. 17(b). Itis worthwhile to empha-
size that the proposed algorithm will have more noticeable improvement over the
OMP algorithm when there is larger uncertainty in the spectral sparsity levelk.

Finally, Fig. 18 further explores the performance of different recovery algo-
rithms. In order to illustrate the performance of CASe when using different recovery
algorithms, the MSE of the reconstructed spectrum is given in Fig. 18(a). It can be
seen that the gain of using the proposed algorithm over OMP isapproximately one
order of magnitude in MSE. This is because the proposed algorithm can terminate
the iteration at the right iteration index; by contrast, when using OMP, the problems
of either under-fitting or over-fitting exist, leading to either incomplete spectral re-
covery or noisy spectral recovery. As a consequence, we can see from Fig. 18(b)
that, for a fixed SMNR=50 dB, the proposed algorithm has much lower recovered
error rate than the OMP algorithm. We note that the recoverederror rate is defined
as the probability of simulated mean MSE larger than the target MSE.

4.7 Discussions and Conclusions

4.7.1 Discussions

The CASe framework shares its goals with some recent effortsthat have looked at
testing the actual error directly from compressed data. Theℓ2 norm cross validation
approach for compressed sensing has been studied by Ward [34], and Boufounos
et al. [35]. These results are very remarkable as they allow us to verify the actual
decoding error with almost no effort (i.e., a very few measurements are reserved for
testing). We note that the results here are different from those in these papers. In
particular, we have studied a different validation approach, i.e., theℓ1 norm is used
for validating the recovery result, rather than theℓ2 norm. In addition, the effects of
measurement noise were carefully considered in our analysis. By contrast, Ward’s
validation approach did not model the effects of measurement noise. When the pro-
posedℓ1 norm validation approach is used in compressed sensing technologies, it
could be a useful complement to the work in [34, 35]. It shouldalso be emphasized
that, compared to theℓ2 norm validation approach, the proposedℓ1 norm valida-
tion approach is less sensitive to outliers. As shown in Fig.19(a), when outliers
exist in the testing set, the validation parameter of using the ℓ1 norm is one order
in magnitude lower than that of using theℓ2 norm. Moreover, we note that using
compressed sensing technologies for wideband spectrum sensing in a cognitive ra-
dio system, we cannot avoid outliers. This is because the ADCis not a noise-free
device, and the non-linearity of ADC could be a source of generating outliers. Fur-
thermore, in a real-time compressed sensing device such as the random demodulator
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Fig. 18 Performance comparison of different recovery algorithms:(a) the spectral recovery mean
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in [26, 29, 30], imperfect synchronization of the pseudo-random sequence generator
and the low-rate ADC could result in outliers.

A natural technique for choosing the stopping time of the measurement would
be sequential detection [36], in which we collect one sampleat a time until we
have enough observations to generate a final decision. However, we note that, in the
compressed sensing-based spectrum sensing system, the sequential measurements
cannot be directly used for performing sequential test. This is because, due to the
sub-Nyquist sampling, there exists spectral aliasing phenomenon, which makes fre-
quencies become indistinguishable. Thus, in order to applysequential detection, the
wideband spectrum should be reconstructed before each sequential test for avoiding
spectral aliasing. In such a scenario, sequential detection could lead to high compu-
tational costs. Malioutovet al. [37] have studied a typical compressed sensing-based
sequential measurement system, where the decoder can receive compressed samples
sequentially. It has been shown that such a system can successfully estimate the cur-
rent decoding error by using some additional samples. Nevertheless, it is not proper
to apply the compressed sensing-based sequential measurement setup in cognitive
radio systems. Because, in this scheme, the wideband spectrum should be repeat-
edly reconstructed for each additional measurement that could lead to high compu-
tational costs and large spectrum sensing overhead in cognitive radios. For exam-
ple, using the CoSaMP algorithm [28], the running time in each reconstruction is
O(β N), whereβ denotes the current number of measurements. Thus, the totalrun-

ning time for the sequential measurement setup isO(M(M+1)N
2 ), whereM denotes

the number of measurements till the termination of measurement. By contrast, in
our proposed system, the spectrum sensing time slot is divided intoP equal-length
mini-time slots, and the wideband spectrum is reconstructed after each mini-time
slot. The total running time of the proposed system is thereforeO(M(P+1)N

2 ), where
P ≪ M. Fig. 19(b) shows that the spectrum sensing overhead (due tothe spectral
reconstruction) of the sequential compressed sensing system is several times higher
than that of the proposed system. Furthermore, another advantage of the proposed
system is that, by changing the length of mini-time slot (thus the value ofP because
P = M

m ), we can control the trade-off between the cost of computation and the cost
of acquiring additional measurements.

4.7.2 Conclusions

We have presented a novel framework, i.e., CASe, for wideband spectrum sensing in
cognitive radio systems. It has been shown that CASe can considerably improve the
spectral recovery performance when the sparsity level of the spectrum is unknown,
thanks to theℓ1 norm validation approach. We have shown that the proposed vali-
dation parameter can be a very good proxy for the actual spectral recovery error in
the noiseless measurement case even if the testing set is small. The proper use of the
validation approach could solve the problems of excessive or insufficient numbers
of measurements, thereby improving not only the energy-efficiency of cognitive ra-
dio, but also the throughput of cognitive radio networks. Inaddition, we have shown
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that, in the case of noisy compressive measurements, if the best spectral approxima-
tion exists, then the corresponding validation parameter has a very large probability
of being within a certain small range. Based on this property, we have proposed a
sparsity-aware recovery algorithm for reconstructing thewideband spectrum with-
out the knowledge of the spectral sparsity level. In the proposed algorithm, if the
best spectral approximation exists, then the correct iteration termination index can
be found with high probability; therefore, the issues of under-/over-fitting are ad-
dressed.

Simulation results have shown that the proposed framework can correctly termi-
nate the signal acquisition that saves both spectrum sensing time slots and signal
acquisition energy, while providing better spectral recovery performance than tradi-
tional compressed sensing approaches. Compared with the existing greedy recovery
algorithm, the proposed sparsity-aware algorithm can achieve lower MSE for recon-
structing the spectrum and better spectrum sensing performance. As the RF spec-
trum is the lifeblood of wireless communication systems andthe wideband tech-
niques could potentially offer greater capacity, we expectthat the proposed frame-
work has a broad range of applications, e.g., broadband spectral analyzers, signals-
intelligence receivers, and ultra wideband radars. Moreover, the proposedℓ1 norm
validation approach can be used in other compressed sensingapplications, e.g., a
compressed sensing based communication system where we need to terminate the
decoding algorithm with high confidence and small predictable decoding error.

Acknowledgements H. Sun and A. Nallanathan acknowledge the support of the UK Engineering
and Physical Sciences Research Council (EPSRC) with Grant No. EP/I000054/1.

Appendix

Proof of Theorem 1

Using a variant of the Johnson-Lindenstrauss lemma as shownin Theorem 5.1 of
[38], we have

Pr

[
(1− ε)‖x‖2 ≤

‖Ψx‖1√
2/π r

≤ (1+ ε)‖x‖2

]
≥ 1− ξ . (23)

Definingx
△
= F−1(X− X̂p) in (23), we obtain

Pr

[
(1− ε)‖F−1(X− X̂p)‖2 ≤

‖ΨF−1(X− X̂p)‖1√
2/π r

≤ (1+ ε)‖F−1(X− X̂p)‖2

]
≥ 1−ξ .

(24)
The above inequality can be rewritten by using (12) and (14)
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Pr

[
(1− ε)‖F−1(X− X̂p)‖2 ≤

√
π
2

ρp ≤ (1+ ε)‖F−1(X− X̂p)‖2

]
≥ 1−ξ . (25)

Applying Parseval’s relation to (25), we have

Pr

[
(1− ε)‖X− X̂p‖2 ≤

√
πN
2

ρp ≤ (1+ ε)‖X− X̂p‖2

]
≥ 1−ξ . (26)

Thus, Theorem 1 follows.

Proof of Theorem 2

The best spectral approximationX⋆ means that‖X⋆ − X‖2 is sufficiently small.
Without loss of generality, we approximateX⋆ by X. Thus, ifX̂p is the best spectral
approximation, the validation parameter can be rewritten by using (18)

ρp =
‖V−ΨF−1X̂p‖1

r
=

‖n‖1

r
=

∑r
i=1 |ni|

r
. (27)

As the measurement noiseni ∼ CN (0,δ 2), its absolute value|ni| follows the
Rayleigh distribution with mean

√π
2 δ and variance4−π

2 δ 2. Using the cumula-
tive distribution function of the Rayleigh distribution, we have Pr(|ni| ≤ x) = 1−
exp(− x2

2δ 2 ). Further, as the measurement noise level has an upper-boundn̄ in prac-

tice, there exists a sufficiently large parameterν that makes|ni| ≤ n̄ ≤ (ν +1)
√π

2 δ
almost surely. If we define a new variableDi = |ni|−

√π
2 δ , we obtainE[Di] = 0,

E[D2
i ] = 4−π

2 δ 2, and|Di| ≤
√π

2 δν. Based on the Bernstein’s inequality [39], the
following inequality holds

Pr

[∣∣∣∣∣
r

∑
i=1

Di

∣∣∣∣∣ > ε

]
= Pr

[∣∣∣∣∣
r

∑
i=1

|ni|− r

√
π
2

δ

∣∣∣∣∣ > ε

]
(28)

≤ 2exp

(
− ε2/2

∑r
i=1E[D2

i ]+ Dε/3

)
(29)

≤ 2exp

(
− 3ε2

3(4−π)rδ 2+
√

2πεδν

)
(30)

whereD =
√π

2 δν denotes the upper-bound on|Di|.
Simply replacingε by rε in (30) while using (27), we can rewrite (30) as

Pr

[∣∣∣∣ρp −
√

π
2

δ
∣∣∣∣ > ε

]
≤ 2exp

(
− 3rε2

3(4−π)δ 2+
√

2πεδν

)
. (31)

Using (31), we end up with
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Pr

[∣∣∣∣ρp −
√

π
2

δ
∣∣∣∣ ≤ ε

]
> 1−2exp

(
− 3rε2

3(4−π)δ 2+
√

2πεδν

)
. (32)

To derive the requiredr, we set the lower probability bound in (32) as

1−2exp

(
− 3rε2

3(4−π)δ 2+
√

2πεδν

)
= 1−ρ . (33)

Solving the above equation, we obtain

r = ln

(
2
ρ

)
3(4−π)δ 2+

√
2πεδν

3ε2 . (34)

This completes the proof of Theorem 2.

References

1. M. A. McHenry, “NSF spectrum occupancy measurements project summary,” Shared Spec-
trum Company, Tech. Rep., Aug. 2005.

2. S. Haykin, “Cognitive radio: brain-empowered wireless communications,”IEEE Journal on
Selected Areas in Communications, vol. 23, no. 2, pp. 201 – 220, Feb. 2005.

3. I. Akyildiz, W.-Y. Lee, M. Vuran, and S. Mohanty, “A surveyon spectrum management in
cognitive radio networks,”IEEE Communications Magazine, vol. 46, no. 4, pp. 40 –48, Apr.
2008.

4. J. Mitola, “Cognitive radio: An integrated agent architecture for software defined radio,” Ph.D.
dissertation, Dept. of Teleinformatics, Royal Institute of Technology Stockholm, Sweden, 8
May, 2000.

5. I. F. Akyildiz, W.-Y. Lee, M. C. Vuran, and S. Mohanty, “NeXt generation/dynamic spectrum
access/cognitive radio wireless networks: a survey,”Computer Networks, vol. 50, no. 13, pp.
2127–2159, 2006.

6. H. Ekram and B. V. K,Cognitive Wireless Communications Networks, B. V. K, Ed. Springer
Publication, 2007.

7. D. Cabric, S. M. Mishra, and R. W. Brodersen, “Implementation issues in spectrum sensing
for cognitive radios,” inProc. Asilomar Conf. on Signals, Systems, and Computers, vol. 1,
2004, pp. 772–776.

8. H. Sun, D. Laurenson, and C.-X. Wang, “Computationally tractable model of energy detection
performance over slow fading channels,”IEEE Communications Letters, vol. 14, no. 10, pp.
924–926, Oct. 2010.

9. E. Hossain, D. Niyato, and Z. Han,Dynamic Spectrum Access and Management in Cognitive
Radio Networks. Cambridge University Press, July 2009.

10. Z. Tian and G. B. Giannakis, “A wavelet approach to wideband spectrum sensing for cognitive
radios,” in Proc. IEEE Cognitive Radio Oriented Wireless Networks and Communications,
Mykonos Island, Greece, June 2006, pp. 1–5.

11. J. G. Proakis,Digital Communications, 4th ed. McGraw-Hill, 2001.
12. T. Yucek and H. Arslan, “A survey of spectrum sensing algorithms for cognitive radio appli-

cations,”IEEE Communications Surveys Tutorials, vol. 11, no. 1, pp. 116 –130, 2009.
13. Z. Tian and G. B. Giannakis, “Compressed sensing for wideband cognitive radios,” inProc.

IEEE International Conference on Acoustics, Speech, and Signal Processing, Hawaii, USA,
April 2007, pp. 1357–1360.



38 Hongjian Sun, Arumugam Nallanathan, and Jing Jiang

14. M.-H. Yoon, Y. Shin, H.-K. Ryu, and J.-M. Woo, “Ultra-wideband loop antenna,”Electronics
Letters, vol. 46, no. 18, pp. 1249–1251, Sept. 2010.

15. Z.-C. Hao and J.-S. Hong, “Highly selective ultra wideband bandpass filters with quasi-elliptic
function response,”IET Microwaves, Antennas Propagation, vol. 5, no. 9, pp. 1103–1108,
2011.

16. [Online]. Available: www.national.com/pf/DC/ADC12D1800.html
17. H. Sun, W.-Y. Chiu, J. Jiang, A. Nallanathan, and H. V. Poor, “Wideband spectrum sensing

with sub-Nyquist sampling in cognitive radios,”IEEE Transactions on Signal Processing,
vol. 60, no. 11, pp. 6068–6073, nov. 2012.

18. R. Venkataramani and Y. Bresler, “Perfect reconstruction formulas and bounds on aliasing
error in sub-Nyquist nonuniform sampling of multiband signals,” IEEE Trans. Information
Theory, vol. 46, no. 6, pp. 2173 –2183, Sep. 2000.

19. T. Tao, “An uncertainty principle for cyclic groups of prime order,”Math. Res. Lett, vol. 12,
pp. 121–127, 2005.

20. M. Mishali and Y. C. Eldar, “Blind multiband signal reconstruction: Compressed sensing for
analog signals,”IEEE Trans. Signal Processing, vol. 57, no. 3, pp. 993–1009, March 2009.

21. A. Feldster, Y. Shapira, M. Horowitz, A. Rosenthal, S. Zach, and L. Singer, “Optical under-
sampling and reconstruction of several bandwidth-limitedsignals,” Journal of Lightwave
Technology, vol. 27, no. 8, pp. 1027 –1033, April 2009.

22. A. Rosenthal, A. Linden, and M. Horowitz, “Multi-rate asynchronous sampling of sparse
multi-band signals,” 2008, arXiv.org:0807.1222.

23. M. Fleyer, A. Rosenthal, A. Linden, and M. Horowitz, “Multirate synchronous sampling of
sparse multiband signals,” 2008, arXiv.org:0806.0579.

24. S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition by basis
pursuit,” SIAM Review, vol. 43, no. 1, pp. 129–159, 2001. [Online]. Available:
http://www.jstor.org/stable/3649687

25. Y. L. Polo, Y. Wang, A. Pandharipande, and G. Leus, “Compressive wide-band spectrum sens-
ing,” in Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing,
Taipei, April 2009, pp. 2337–2340.

26. J. A. Tropp, J. N. Laska, M. F. Duarte, J. K. Romberg, and R.Baraniuk, “Beyond Nyquist:
Efficient sampling of sparse bandlimited signals,”IEEE Trans. Information Theory, vol. 56,
no. 1, pp. 520–544, Jan. 2010.

27. M. Mishali and Y. Eldar, “From theory to practice: Sub-Nyquist sampling of sparse wideband
analog signals,”IEEE Journal of Selected Topics in Signal Processing, vol. 4, no. 2, pp. 375
–391, april 2010.

28. D. Needell and J. Tropp, “Cosamp: Iterative signal recovery from incomplete and inaccurate
samples,”Applied and Computational Harmonic Analysis, vol. 26, no. 3, pp. 301 – 321,
2009. [Online]. Available: http://www.sciencedirect.com/science/article/B6WB3-4T1Y404-
1/2/a3a764ae1efc1bd0569dcde301f0c6f1

29. J. Laska, S. Kirolos, Y. Massoud, R. Baraniuk, A. Gilbert, M. Iwen, and M. Strauss, “Random
sampling for analog-to-information conversion of wideband signals,” inProc. IEEE DCAS,
Oct. 2006, pp. 119–122.

30. J. N. Laska, S. Kirolos, M. F. Duarte, T. S. Ragheb, R. G. Baraniuk, and Y. Massoud, “Theory
and implementation of an analog-to-information converterusing random demodulation,” in
Proc. IEEE International Symposium on Circuits and Systems ISCAS 2007, 27–30 May 2007,
pp. 1959–1962.

31. E. J. Candes and T. Tao, “Decoding by linear programming,” IEEE Tr. IT, vol. 51(12), pp.
4203–4215, 2005.

32. J. Haupt, W. U. Bajwa, M. Rabbat, and R. Nowak, “Compressed sensing for networked data,”
IEEE SP Mag., vol. 25(2), pp. 92–101, 2008.

33. Z. Quan, S. Cui, A. H. Sayed, and H. V. Poor, “Optimal multiband joint detection for spectrum
sensing in cognitive radio networks,”IEEE Transactions on Signal Processing, vol. 57, no. 3,
pp. 1128–1140, Mar. 2009.

34. R. Ward, “Compressed sensing with cross validation,”IEEE Trans. on Information Theory,
vol. 55, no. 12, pp. 5773–5782, Dec. 2009.



Sub-Nyquist Sampling and Compressed Sensing in Cognitive Radio Networks 39

35. P. Boufounos, M. Duarte, and R. Baraniuk, “Sparse signalreconstruction from noisy com-
pressive measurements using cross validation,” inProc. IEEE/SP 14th Workshop on Statistical
Signal Processing, Madison, WI, USA, Aug. 2007, pp. 299–303.

36. S. Chaudhari, V. Koivunen, and H. V. Poor, “Autocorrelation-based decentralized sequential
detection of OFDM signals in cognitive radios,”IEEE Transactions on Signal Processing,
vol. 57, no. 7, pp. 2690–2700, July 2009.

37. D. Malioutov, S. Sanghavi, and A. Willsky, “Sequential compressed sensing,”IEEE Journal
of Selected Topics in Signal Processing, vol. 4, no. 2, pp. 435–444, April 2010.

38. J. Matousek, “On variants of the Johnson-Lindenstrausslemma,”Random Structures and Al-
gorithms, vol. 33, pp. 142–156, 2008.

39. M. Hazewinkel, Ed.,Encyclopaedia of Mathematics. New York: Springer, Nov. 1987, vol. 1.

View publication statsView publication stats

https://www.researchgate.net/publication/279799937

