ResearchGate

See discussions, stats, and author profiles for this publication at:

Sub-Nyquist Sampling and Compressed Sensing
in Cognitive Radio Networks

Book - September 2014

DOI: 10.1007/978-3-642-38398-4_6

CITATIONS READS

0 59

6 authors, including:

2

<) Durham University &~ Queen Mary, University of London
61 PUBLICATIONS 1,045 CITATIONS 381 PUBLICATIONS 5,604 CITATIONS
SEE PROFILE SEE PROFILE

Some of the authors of this publication are also working on these related projects:

Project Molecular Communications

it Simultaneous Wireless InFormation and Energy Transfer

All content following this page was uploaded by on 22 October 2015.

The user has requested enhancement of the downloaded file.


https://www.researchgate.net/publication/279799937_Sub-Nyquist_Sampling_and_Compressed_Sensing_in_Cognitive_Radio_Networks?enrichId=rgreq-2725d3c03ee38977ba77e97ae9e257b3-XXX&enrichSource=Y292ZXJQYWdlOzI3OTc5OTkzNztBUzoyODczMjE4NDE3ODI3ODRAMTQ0NTUxNDI3MzM0OQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/279799937_Sub-Nyquist_Sampling_and_Compressed_Sensing_in_Cognitive_Radio_Networks?enrichId=rgreq-2725d3c03ee38977ba77e97ae9e257b3-XXX&enrichSource=Y292ZXJQYWdlOzI3OTc5OTkzNztBUzoyODczMjE4NDE3ODI3ODRAMTQ0NTUxNDI3MzM0OQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Molecular-Communications?enrichId=rgreq-2725d3c03ee38977ba77e97ae9e257b3-XXX&enrichSource=Y292ZXJQYWdlOzI3OTc5OTkzNztBUzoyODczMjE4NDE3ODI3ODRAMTQ0NTUxNDI3MzM0OQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Simultaneous-Wireless-InFormation-and-Energy-Transfer?enrichId=rgreq-2725d3c03ee38977ba77e97ae9e257b3-XXX&enrichSource=Y292ZXJQYWdlOzI3OTc5OTkzNztBUzoyODczMjE4NDE3ODI3ODRAMTQ0NTUxNDI3MzM0OQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-2725d3c03ee38977ba77e97ae9e257b3-XXX&enrichSource=Y292ZXJQYWdlOzI3OTc5OTkzNztBUzoyODczMjE4NDE3ODI3ODRAMTQ0NTUxNDI3MzM0OQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hongjian_Sun2?enrichId=rgreq-2725d3c03ee38977ba77e97ae9e257b3-XXX&enrichSource=Y292ZXJQYWdlOzI3OTc5OTkzNztBUzoyODczMjE4NDE3ODI3ODRAMTQ0NTUxNDI3MzM0OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hongjian_Sun2?enrichId=rgreq-2725d3c03ee38977ba77e97ae9e257b3-XXX&enrichSource=Y292ZXJQYWdlOzI3OTc5OTkzNztBUzoyODczMjE4NDE3ODI3ODRAMTQ0NTUxNDI3MzM0OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Durham_University?enrichId=rgreq-2725d3c03ee38977ba77e97ae9e257b3-XXX&enrichSource=Y292ZXJQYWdlOzI3OTc5OTkzNztBUzoyODczMjE4NDE3ODI3ODRAMTQ0NTUxNDI3MzM0OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hongjian_Sun2?enrichId=rgreq-2725d3c03ee38977ba77e97ae9e257b3-XXX&enrichSource=Y292ZXJQYWdlOzI3OTc5OTkzNztBUzoyODczMjE4NDE3ODI3ODRAMTQ0NTUxNDI3MzM0OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Arumugam_Nallanathan?enrichId=rgreq-2725d3c03ee38977ba77e97ae9e257b3-XXX&enrichSource=Y292ZXJQYWdlOzI3OTc5OTkzNztBUzoyODczMjE4NDE3ODI3ODRAMTQ0NTUxNDI3MzM0OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Arumugam_Nallanathan?enrichId=rgreq-2725d3c03ee38977ba77e97ae9e257b3-XXX&enrichSource=Y292ZXJQYWdlOzI3OTc5OTkzNztBUzoyODczMjE4NDE3ODI3ODRAMTQ0NTUxNDI3MzM0OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Queen_Mary_University_of_London?enrichId=rgreq-2725d3c03ee38977ba77e97ae9e257b3-XXX&enrichSource=Y292ZXJQYWdlOzI3OTc5OTkzNztBUzoyODczMjE4NDE3ODI3ODRAMTQ0NTUxNDI3MzM0OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Arumugam_Nallanathan?enrichId=rgreq-2725d3c03ee38977ba77e97ae9e257b3-XXX&enrichSource=Y292ZXJQYWdlOzI3OTc5OTkzNztBUzoyODczMjE4NDE3ODI3ODRAMTQ0NTUxNDI3MzM0OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Arumugam_Nallanathan?enrichId=rgreq-2725d3c03ee38977ba77e97ae9e257b3-XXX&enrichSource=Y292ZXJQYWdlOzI3OTc5OTkzNztBUzoyODczMjE4NDE3ODI3ODRAMTQ0NTUxNDI3MzM0OQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Sub-Nyquist Sampling and Compressed Sensing
in Cognitive Radio Networks

Hongjian Sun, Arumugam Nallanathan, and Jing Jiang

Abstract Cognitive radio has become one of the most promising saiatfor ad-
dressing the spectral under-utilization problem in wissleommunication systems.
As a key technology, spectrum sensing enables cognitiiesdd find spectrum
holes and improve spectral utilization efficiency. To exphoore spectral opportu-
nities, wideband spectrum sensing approaches should heeatito search multi-
ple frequency bands at a time. However, wideband spectrusirgg systems are
difficult to design, due to either high implementation coexity or high finan-
cial/lenergy costs. Sub-Nyquist sampling and compresseirggplay crucial roles
in the efficient implementation of wideband spectrum semsircognitive radios.

In this chapter, Section 1 presents the fundamentals ofitegradios. A liter-
ature review of spectrum sensing algorithms is given iniSe@. Wideband spec-
trum sensing algorithms are then discussed in Section Ji&@tention is paid
to the use of Sub-Nyquist sampling and compressed sensihgitgies for realiz-
ing wideband spectrum sensing. Finally, Section 4 showsdaptave compressed
sensing approach for wideband spectrum sensing in cogméio networks.

1 Cognitive Radio Networks

Nowadays, radio frequency (RF) spectrum is a scarce anddamatural resource
due to its unique character in wireless communicationsautite current policy, the
primary user of a frequency band has exclusive rights ofgutie licensed band.
With the explosive growth of wireless communication apgiicns, the demands
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Fig. 1 Dynamic spectrum access and spectrum holes [3].

for the RF spectrum are constantly increasing. It becomiglept/that such spec-
tral demands cannot be met under the exclusive spectraksitbm policy. On the
other hand, it has been reported that the temporal and gaugrspectral utiliza-
tion efficiency is very low. For example, the maximal occupaaf the frequency
spectrum between 30 MHz and 3 GHz (in New York City) has beponted to be
only 131%, with the average occupancy a2% [1]. As depicted by Figure 1, the
spectral under-utilization problem can be addressed byvall secondary users to
dynamic access the licensed band when its primary user @éakognitive radio

is one of the key technologies that could improve the spkatilzation efficiency
as suggested by Prof. S. Haykin [2]:

Cognitive radio is viewed as a novel approach for improving @tilization of a precious
natural resource: the radio electromagnetic spectrum.

1.1 Cognitive radio definition and components

The termcognitive radio, first coined by Dr. J. Mitola [4], has the following formal
definition [2]:

Cognitive radio is an intelligent wireless communicatigstem that is aware of its sur-
rounding environment (i.e. outside world), and uses théhodilogy of understanding-by-
building to learn from the environment and adapt its intestates to statistical variations
in the incoming RF stimuli by making corresponding changeseirtain operating param-
eters (e.g., transmit-power, carrier-frequency, and ratiun strategy) in real-time, with
two primary objectives in mind:

e highly reliable communications whenever and wherever eged

o efficient utilisation of the radio spectrum.
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Fig. 2 The cognitive capability of cognitive radio enabled by aibasgnitive cycle [5].

From the definition, the key characteristic of cognitiveioaid cognitive capa-
bility. It means that cognitive radio should interact with €nvironment, and intelli-
gently determine appropriate communication parameteysdan quality of service
(QoS) requirements. These tasks can be implemented by @admagiitive cycle as
illustrated in Figure 2:

e Spectrum sensing: To improve the spectral utilization efficiency, cognitiaaio
should regularly monitor the RF spectral environment. Gignradio should
not only find spectrum holes, which are not currently usedrimary users, by
scanning the whole RF spectrum, but also needs to detectatus ®f primary
users for avoiding causing potential interference.

e Spectrumanalysis: After spectrum sensing, the characteristics of spectrai@sh
should be estimated. The following parameters need to bekne.g., chan-
nel side information, capacity, delay, and reliabilitydamill be delivered to the
spectrum decision step.

e Spectrum decision: Based on the characteristics of spectrum holes, an agpropr
ate spectral band will be chosen for a particular cognitadia node according
to its QoS requirement while considering the whole netwaikness. After that,
cognitive radio could determine new configuration paransete.g., data rate,
transmission mode, and bandwidth of the transmission, lzew teconfigure it-
self by using software defined radio techniques.
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1.2 Applications of Cognitive Radio Networks

Because cognitive radio is aware of the RF spectral enviestirand is capable
of adapting its transmission parameters to the RF speaix@lonment, cognitive
radio and the concepts of cognitive radio can be applied taregety of wireless

communication environments, especially in commercial mnildary applications.

A few of applications are listed below:

e Coexistence of wireless technologies. Cognitive radio techniques were primarily
considered for reusing the spectrum that is currently atledt to the TV service.
Wireless regional area network (WRAN) users can take adganof broadband
data delivery by the opportunistic usage of the underetlizpectrum. Addi-
tionally, the dynamic spectrum access techniques will @ayimportant role
in full interoperability and coexistence among diversehtertogies for wireless
networks. For example, cognitive radio concepts can be tesegtimize and
manage the spectrum when the wireless local area networkA(NYland the
Bluetooth devices coexist.

e Military networks: In military communications, bandwidth is often at a premium
By using cognitive radio concepts, military radios can naiyachieve substan-
tial spectral efficiency on a noninterfering basis, but atstuce implementation
complexity for defining the spectrum allocation for eachrusarthermore, mil-
itary radios can obtain benefits from the opportunistic spec access function
supported by the cognitive radio [6]. For example, the manilitradios can adapt
their transmission parameters to use Global System for l¢BISM) bands, or
other commercial bands when their original frequenciegaamened. The mech-
anism of spectrum management can help the military radioigae information
superiority on the battlefield. Furthermore, from the seisli perspective, cog-
nitive radio can help the soldiers to reach an objectiveubhoits situational
awareness.

e Heterogeneous wireless networks: From a user’s point of view, a cognitive radio
device can dynamically discover information about accefworks, e.g. WiFi
and GSM, and makes decisions on which access network is witgle for its
requirements and preferences. Then the cognitive radiwelevill reconfigure
itself to connect to the best access network. When the emviemtal conditions
change, the cognitive radio device can adapt to these chaiipe information
as seen by the cognitive radio user is as transparent abfgotsstchanges in the
communication environment.

2 Traditional Spectrum Sensing Algorithms

As a key technology in cognitive radio, spectrum sensingikheense spectrum
holes and detect the presence/absence of primary usersndstesfficient way to
sense spectrum holes is to detect active primary trangsaivehe vicinity of cogni-
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tive radios. However, as some primary receivers are pgssieh as TVs, some are
difficult to detect in practice. Tractional spectrum seggechniques can be used to
detect the primary transmitters, i.e., matched filterinlg §nergy detection [8], cy-
clostationary detection [9], and wavelet based detectl®j. [The implementation
of these algorithms requires different conditions, andrttietection performance
are correspondingly distinguished. The advantages aadhsitages of these algo-
rithms are summarized in Table 1.

Tablel Summary of advantages and disadvantages of traditionelrspe sensing algorithms.

Spectrum sensing algorithm  Advantages Disadvantages

Matched filter [7] Optimal performance Require prior infation
Low computational cost of the primary user

Energy detection [8] Do not require prior information  Poerfprmance for low SNR
Low computational cost Cannot differentiate users

Cyclostationary [9] Valid in slow SNR region Require pdrpeaor information
Robust against interference High computational cost

Wavelet based detection [10] Valid for dynamic and widebarigh sampling rate
spectrum sensing High computational cost

2.1 Matched filter

A block diagram of a matched filter is shown in Figure 3(a). Thatched filter
method is an optimal approach for spectrum sensing in theestirat it maximizes
the signal-to-noise ratio (SNR) in the presence of additeise [11]. Another ad-
vantage of the matched filter method is that it requires l&ésgivation time since
the high processing gain can be achieved by coherent date&tor example, to
meet a given probability of detection, onl§y(1/SNR) samples are required [7].
This advantage is achieved by correlating the receivedasigith a template to
detect the presence of a known signal in the received sigiwalever, it relies on
prior knowledge of the primary user, such as modulation tgoel packet format,
and requires cognitive radio to be equipped with carriechyonization and timing
devices. With more types of primary users, the implemesiatomplexity grows
making the matched filter impractical.
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Fig. 3 Block diagrams for traditional spectrum sensing algorihifa) matched filter, (b) time
domain energy detection, (c) frequency domain energy tlete@nd (d) cyclostationary detection.

2.2 Energy detection

If the information about the primary user is unknown in cdiyeiradio, a commonly
used method for detecting the primary users is energy dete|@]. Energy detec-
tion is a non-coherent detection method that avoids the feredomplicated re-
ceivers required by a matched filter. An energy detector eamplemented in both
the time and the frequency domain. For time domain energgctien as shown
in Figure 3(b), a bandpass filter (BPF) is applied to seleatraey frequency and
bandwidth of interest. Then the energy of the received $igmaeasured by a mag-
nitude squaring device, with an integrator to control theestsation time. Finally,
the energy of the received signal will be compared with a gtenined threshold
to decide whether the primary user is present or not. How&veense a wide spec-
trum span, sweeping the BPF will result in a long measuretimet As shown in
Figure 3(c), in the frequency domain, the energy detectobesimplemented sim-
ilarly to a spectrum analyzer with a fast Fourier transfoRRT). Specifically, the
received signal is sampled at or above the Nyquist rate otiemeawindow. Then
the power spectral density (PSD) is computed using an FF&.FHT is employed
to analyze a wide frequency span in a short observation tiatleer than sweeping
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the BPF in Figure 3(b). Finally, the PSD will be compared vatthresholdA, to
decide whether the corresponding frequency is occupiedtr n

The advantages of energy detection are that prior knowlefitpe primary users
is not required, and both the implementation and the contiput complexity
are generally low. In addition, a short observation timeeguired, for example,
0(1/SNRP) samples are required to satisfy a given probability of diad7].
Although energy detection has a low implementation coniplgk has some draw-
backs. A major drawback is that it has poor detection peréme under low SNR
scenarios as it is a non-coherent detection scheme. Andtheback is that it can-
not differentiate between the signal from a primary user taednterference from
other cognitive radios, thus, it cannot take advantage aptie signal processing,
such as interference cancelation. Furthermore, noisé¢ lex@rtainty can lead to
further performance loss. These disadvantages can beaonerzy using two-stage
spectrum sensing technique, i.e. coarse spectrum sensihfine spectrum sens-
ing. Coarse spectrum sensing can be implemented by eneeptida or wideband
spectrum analyzing techniques. The aim of coarse spectensirgy is to quickly
scan the wideband spectrum and identify some possiblerspettoles in a short
observation time. By contrast, fine spectrum sensing fuithestigates and anal-
ysis these suspected frequencies. More sophisticatedtideteechniques can be
used at this stage, such as cyclostationary detectionideddrelow.

2.3 Cyclostationary detection

A block diagram of cyclostationary detection is shown indfig3(d). Cyclostation-
ary detection is a method for detecting the primary usersxpjoéing the cyclo-
stationary features in the modulated signals. In most ¢élseseceived signals in
cognitive radios are modulated signals, which in generailgixbuilt-in-periodicity
within the training sequence or cyclic prefixes. This peidig is generated by the
primary transmitter so that the primary receiver can useriphrameter estimation,
such as channel estimation, and pulse timing [12]. The cydirelation function,
also called cyclic spectrum function (CSF), is used for chirtg signals with a par-
ticular modulation type in the presence of noise. This isabise noise is usually
wide-sense stationary (WSS) without correlation, by astirmodulated signals
are cyclostationary with spectral correlation. Furthemmaince different modu-
lated signals will exhibit different characteristics, ystationary detection can be
used for distinguishing between different types of traradisignals, noise, and
interference in low SNR environments. One of the drawbadksyolostationary
detection is that it still requires partial information dfet primary user. Another
drawback is that the computational cost is high as the CSFwadimensional
function dependent on frequency and cyclic frequency [9].
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Fig. 4 Demonstration of the Fourier spectrum of interest. The PSfdriooth within each subband,
and exhibits discontinuities and irregularities with tlilgagent subbands [10, 13].

2.4 Wavelet based spectrum sensing

In [10], Tian and Giannakis proposed a wavelet-based gpectensing approach.
It provides an advantage of flexibility in adapting to a dym@aspectrum. In this
approach, the PSD of the Fourier spectrum is modeled asedfrabnsecutive fre-
quency subbands, where the PSD is smooth within each suliheérmkhibits dis-
continuities and irregularities on the border of two neigtibg subbands as shown
in Figure 4. The wavelet transform of the wideband PSD is tséatate the singu-
larities of the PSD.
Let ¢ (f) be a wavelet smoothing function, the dilationgoff ) is given by

0u(t) = 36 (5) &

whered is a dyadic scale that can take values that are powers of 2,41, The
continuous wavelet transform (CWT) of the PSD is given by|[10

CWT{S(f)} = S(f) * u(f) (2)

where %" denotes the convolution arf§| f ) is the PSD of the received signal.

Then the first and second derivative of the CY&#[f)} are used to locate the ir-
regularities and discontinuities in the PSD. Specificalig,boundaries of each sub-
bands are located by using the local maxima of the first dérevaf CWT{S(f)},
and locations of the subbands are finally tracked by finding @@ssings in the sec-
ond derivative of CWTS(f)}. By controlling the wavelet smoothing function, the
wavelet-based spectrum sensing approach has flexibilagapting to the dynamic
spectrum.
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3 Wideband Spectrum Sensing Algorithms

As the discussions in previous section, spectrum sensc@mposed of data acqui-
sition (sampling) process and decision-making processnidementing wideband
data acquisition, cognitive radio needs some essentiapoaents, i.e., wideband
antenna, wideband RF front end, and high speed analoggitadionverter (ADC).
Considering the Nyquist sampling theory, the sampling cdt&DC is required
to exceed &/ samples per second (known as Nyquist raté)y ilenotes the band-
width of the received signal (e.g., bandwitlth= 10 GHz). In [14], Yooret al. have
shown that the-10 dB bandwidth of the newly designed antenna can be 14.2 GHz.
Hao and Hong [15] have designed a compact highly selectidgelhénd bandpass
filter with a bandwidth of 13.2 GHz. By contrast, the devel@mniof ADC technol-
ogy is relatively behind. When we require an ADC to have a légolution and a
reasonable power consumption, the achievable sampliagfdhe state-of-the-art
ADC is 3.6 Gsps [16]. Thus, ADC becomes a bottleneck in sucldelvand data
acquisition system. Even if there exists ADC with more th@iaps sampling rate,
the real-time digital signal processing of 20 Gh/s of dataldde very expensive.
This dilemma motivates researchers to look for technokgieeduce the sampling
rate while retainingV by using sub-Nyquist sampling techniques.

Sub-Nyquist sampling refers to the problem of recoverinpyais from partial
measurements that are obtained by using sampling rate ltaerthe Nyquist
rate [17]. Three important sub-Nyquist sampling techngjaee: multi-coset sub-
Nyquist sampling, multi-rate sub-Nyquist sampling, anthpoessed sensing based
sub-Nyquist sampling.

3.1 Multi-coset Sub-Nyquist Sampling

Multi-coset sampling is a selection of some samples fromifotm grid, which
can be obtained when uniformly sampling signal at a ratéyofreater than the
Nyquist rate. The uniform grid is then divided into blockd.afonsecutive samples,
and in each block(v < L) samples are retained while the rest of samplesl.i-ev
samples, are skipped. A constant@ehat describes the indexes of thessamples
in each block is called a sampling pattern as

C={t}, o0<tl<t®?<...<t'<L-1 (3)

As shown in Figure 5, the multi-coset sampling can be impleedd by using
% sampling channels with sampling rate%tr, where the-th sampling channel is

offset by% from the origin as below

[N

K] = X(£), n=mL+t, meZ
10, otherwise

(4)
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Fig. 5 Block diagram of multi-coset sub-Nyquist sampling.

wherex(t) denotes the received signal to be sampled.
The discrete-time Fourier transform (DTFT) of the sampkes loe linked to the
unknown Fourier transform of signa(t) by

Y(f) = ®X(f) (5)

whereY (f) denotes a vector of DTFT of these measurements fronannelsX (f)

is a vector of the Fourier transform gft), and® is the measurement matrix whose
elements are determined by the sampling patteffhe problem of wideband spec-
trum sensing is thus equivalent to recoverigf) from Y(f). In order to get a
unique solution from (5), every set wfcolumns of® should be linearly indepen-
dent. However, searching for this sampling pattern is a ¢oatbrial problem.

In [18, 19], some sampling patterns are proved to be validdapnstruction.
The advantage of multi-coset sampling is that the sampéitgin each channel is
times lower than the Nyquist rate. Moreover, the number aisneements i lower
than the Nyquist sampling case. One drawback of the mustecsampling is that
accurate time offsets between sampling channels are eshtdgrsatisfy a specific
sampling pattern. Another one is that the number of sampirannels should be
sufficiently high [20].

3.2 Multi-rate Sub-Nyquist Sampling

An alternative model for compressing the wideband spectirutihe analog do-
main is a multirate sampling system as shown in Figure 6. Alssganous multirate
sampling (MRS) and synchronous multirate sampling (SMR&pwsed for recon-
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Fig. 6 Multirate sampling system implemented by electro-optaalices [21]. In each channel,
the received signal is modulated by a train of short opticéégs. The modulated signal is then
detected by an optical detector, amplified, and sampled bwadte ADC.

structing sparse multiband signals in [22] and [23], reipely. In addition, MRS
has been successfully implemented in experiments usindgatr@optical system
with three sampling channels as described in [21]. Bothesgstemploy three op-
tical pulsed sources that operate at different rates aniffateht wavelengths. The
received signal is modulated with optical pulses, whictviated by an optical pulse
generator (OPG), in each channel. In order to reconstruadeband signal with an
18 GHz bandwidth, the modulated pulses are amplified, angleahby an ADC at
a rate of 4 GHz in each channel.

In [22], the sampling channels of the MRS can be implemergedately with-
out synchronisation. However, reconstruction of the sp@ttequires that each fre-
quency of the signal must be non-aliased in at least one afghgling channels.
In [23] SMRS reconstructs the spectrum from linear equatiovhich relate the
Fourier transform of the signal to the Fourier transformtefsamples. Using com-
pressed sensing theory, sufficient conditions for perfaettonstructing the spec-
trum are obtained; > 2k (the Fourier transform of the signalkssparse) sampling
channels are required. In order to reconstruct the speatsing MRS with fewer
sampling channels, the spectrum to be recovered shoulég®osertain properties,
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Fig. 7 Block diagram of the compressed sensing based widebanthspesensing algorithm.

e.g., minimal bands, and uniqueness. Nonetheless, thérapeasmponents from
primary users may not possess these properties. Obvievsly,though the multi-
rate sampling system has broad application, there is a l@ygavgo to implement
it in a cognitive radio network because of its stringent iegaents on both optical
devices and the number of sampling channels.

3.3 Compressed sensing based sub-Nyquist sampling

In the classic work [13], Tian and Giannakis introduced cogsped sensing theory
to realize wideband spectrum sensing by exploiting thes$fyasf radio signals. The
technique takes advantage of using fewer samples closéetmformation rate,
rather than the inverse of the bandwidth, to perform widebspectrum sensing.
After reconstruction of the wideband spectrum, waveletelaedge detection was
used to detect the wideband spectrum as shown in Figure 7.

Letx(t) represent a wideband signal received at cognitive radigt Jis sampled
at the Nyquist sampling rate, the sequence vectorxie.c CN), will be obtained.
The Fourier transform of the sequen®e= Fx, will therefore be alias-free, where
F denotes the Fourier matrix. When the spectrXmis k-sparse K < N), which
meansk out of N values inX are not neglectable(t) can be sampled at a sub-
Nyquist rate while its spectrum can be reconstructed witlgha probability. The
sub-sampled/compressed signak: CM (k < M < N), is linked to the Nyquist
sequence by [13],

y = ®x (6)

where® € CM*N is the measurement matrix, which is a selection matrix that r
domly choosed columns of the siz&N identity matrix. NamelyN — M samples

out of N samples are skipped. The relationship between the spectramd the

compressed sequengés given by [13]

y = ®F X (7)

whereF~ denotes the inverse Fourier matrix.

ApproximatingX fromy in (7) is a linear inverse problem and is NP-hard. The
basis pursuit (BP) [24] algorithm can be used to sotvey linear programming
[13]:
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Fig. 8 Block diagram for the analog-to-information converter][Zbhe received signak(t), is
randomly demodulated by a pseudorandom chipping sequenegtated by an accumulator, and
sampled at a sub-Nyquist rate.

X =arg min|X|1, s.t. y=®F X, (8)

After reconstructing the full spectrud, the PSD is calculated using. Then
the wavelet detection approach can be used to analyze thes énghe PSD. Al-
though less measurements are used for characterizing teband spectrum, the
requirement of high sampling rate on ADC is not relaxed. Bytcast, in [25], Polo
et al. suggested using an analog-to-information converter (AiGylel (also known
as random demodulator, [26]) for compressing the wideb&ythsin the analog
domain. The block diagram of AIC is given in Figure 8.

A pseudorandom number generator is used to produce a @isoret sequence
£, €1, -+, called a chipping sequence, the number of which takes salfte1 with
equal probability. The waveform should randomly alterredter above the Nyquist
rate, i.e.to > 2W, whereW is the bandwidth of signal. The output of the pseudo-
random number generator, if(t), is employed to demodulate a continuous-time
input x(t) by a mixer. Then an accumulator sums the demodulated signa)/tv
seconds, and the filtered signal is sampled at a sub-Nya@uigsofw. This sampling
approach is called integrate-and-dump sampling sincedtwenaulator is reset after
each sample is taken. The samples acquired by the WEOCY, can be related to
the received signak € C%, by

y = ®x 9)

where® € C"*@ is the measurement matrix describing the overall actiorhef t
AIC system on the input signad. The signalx can be identified by solving the
convex optimization problem,

X=arg min||x||1, s.t. y= ®x, (10)

by BP or other greedy pursuit algorithms. The PSD of the waakebspectrum can
be estimated using the recovered sighdbllowed by a hypothesis test on the PSD.
Alternatively, the PSD can be directly recovered from thesueements using com-
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Fig. 9 Block diagram for the modulated wideband converter [27]ed&th channel, the received
signal is demodulated by a pseudorandom sequence, filtgradov-pass filter, and sampled at a
sub-Nyquist ratet.

pressed sensing algorithms [25]. Although the AIC bypa#isesequirement for a
high sampling rate ADC, it leads to a high computational ctexipy as the huge-
scale of the measurement matrix. Furthermore, it has besamifieed that the AIC
model can easily be influenced by design imperfections orahmésmatches [27].

In [27], Mishali and Eldar proposed a parallel implememtainf the AIC model,
called modulated wideband converter (MWC), as shown in feigu The key dif-
ference is that in each channel the accumulator for integaat-dump sampling
is replaced by a general low-pass filter. One of the benefitstafducing parallel
structure is that the dimension of the measurement matredisced making the re-
construction easier. Another benefit is that it providesisbhess to noise and model
mismatch. On the other hand, the implementation compléxareases as multiple
sampling channels are involved. An implementation issuasifig MWC is that
the storage and transmission of the measurement matrixlmeustnsidered when
it is used in a distributed cognitive radio network under tadasion collaborative
scheme.
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4 Adaptive Compressed Sensing Framework for Wideband
Spectrum Sensing

The compressed sensing technologies require that thel siggha sampled should
be sparse in a suitable basis. If it is sparse, the signal earedonstructed from
partial measurements by using some recovery algorithims aethogonal matching
pursuit (OMP) or compressive sampling matching pursuiS&dP)[28]. Given the
low spectral occupancy, the wideband signal that is reddiyecognitive radios can
be assumed to be sparse in the frequency domain [13]. If faissiy level (de-
noted byk) is known, we can choose an appropriate number of measutsivién
secure the quality of spectral recovery, eM.= Coklog(N/k), whereCy denotes
a constant andN denotes the number of measurements when using the Nyquist
rate [13]. However, in order to avoid incorrect spectrabrary in the cognitive ra-
dio system, traditional compressed sensing approachegmssimistically choose
the paramete€y, which results in excessive nhumber of measurements. Asrshow
in Fig. 10, consideringc = 10, traditional compressed sensing approaches tend to
chooseM = 37%N measurements for achieving a high successful recoven\ate
note that, with 2098 measurements, we can still achieve 50% successful recov-
ery rate. If these 50% successful recovery cases can béefidéntve could save
the number of measurements. In addition, in a practical itiwgmadio system, the
sparsity level of the instantaneous spectrum is often wwkrar difficult to estimate
because of either the dynamic activities of primary useth®time-varying fading
channels between the primary users and cognitive radios t®this sparsity level
uncertainty, traditional compressed sensing approadimsdd further increase the
number of measurements. For example, in Fig. 1Rjsfknown to be 16< k < 20,
traditional compressed sensing approaches would $dlecb0%dN, which does not
fully exploit the advantages of using compressed sensgigiogies for wideband
spectrum sensing. Further, the sparsity level uncertamtyd also result in early or
late termination of greedy recovery algorithms. Due to tifecés of under-fitting or
over-fitting caused by the early or late iteration termiomtitraditional compressed
sensing recovery algorithms will lead to unfavorable sgcecovery quality.

To address these challenges, adaptive compressed sepsiraaeh should be
adopted for reconstructing the wideband spectrum by usireparopriate number
of compressive measurements without prior knowledge afistantaneous spectral
sparsity level. Specifically, the adaptive framework dégdhe spectrum sensing in-
terval into several equal-length time slots, and perforamgressive measurements
in each time slot. The measurements are then partitionedwd complementary
subsets, performing the spectral recovery on the trainibges, and validating the
recovery result on the testing subset. Both the signal aitopri and the spectral
estimation will be terminated if the designédnorm validation parameter meets
certain requirements. In the next section, we will introeltlee adaptive compressed
sensing approach in detail for addressing wideband specemsing issues in cog-
nitive radios.
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Fig. 10 An example of a traditional compressed sensing system ethersuccessful recovery rate
varies when the number of measurements and the sparsitywhaye In simulations, considering

N = 200, we varied the number of measureméntisom 20 to 180 in eight equal-length steps. The
sparsity levek was set to between 1 ail. The measurement matrix was assumed to be Gaussian.
The figure was obtained with 5000 trials of each parameténget

4.1 Problem Statement

Suppose that an analog primary signél) is received at a cognitive radio, and
the frequency range of(t) is 0~ W (Hz). If the signalx(t) were sampled at the
sampling ratef (Hz) in the observation time (seconds), a signal vectare CN*1
would be obtained, wheld denotes the number of samples and can be written as
N = f1. Without loss of generality, we assume th&is an integer number. However,
here we consider that the signal is sampled at sub-Nyquistas enhanced by
compressed sensing.

The compressed sensing theory relies on the fact that weepa@sent many sig-
nals using only a few non-zero coefficients in a suitablesbasidictionary. Such
signals may therefore be acquired by sub-Nyquist samplumggh leads to fewer
samples than predicted on the basis of Nyquist samplingyh&be sub-Nyquist
sampler, e.g., the random demodulator [26, 29, 30], willggate a vector of com-
pressive measurementss CM*1 (M < N) via random projections of the signal
vectorx. Mathematically, the compressive measurement vectan be written as

y = ®x (12)
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Fig. 11 Diagram of compressed sensing based spectrum sensingaappvben using the spectral
domain energy detection approach.

wherex denotes the signal vector obtained by using sampling rageehithan or
equal to the Nyquist rate (i.ef, > 2W), and @ denotes arM x N measurement
matrix. Of course, there is no hope to reconstruct an arlgitdadimensional signal
x from partial measuremenys However, if the signax is k-sparsek < M < N) in
some basis, there do exist measurement matrices that afléavrecovex fromy
using some recovery algorithms.

Based on the fact of spectral sparseness in a cognitive sgdiem [13], the
compressed sensing technologies can be applied for siggaisition at cognitive
radios. A block diagram of a typical compressed sensingchapectrum sensing
infrastructure is shown in Fig. 11. The goal is to recondtthe Fourier spectrum
X = Fx from partial measuremenysand to perform spectrum sensing based on the
reconstructed spectrui. Due to the advantages of short running time and good
sampling efficiency, greedy recovery algorithms are oftseduin some practical
scenarios where the signal processing should be performadhear real-time basis
in addition to computational capability constraints.

After the spectral recovery, spectrum sensing approaciede performed by
using the reconstructed spectrmA typical spectrum sensing approach is spectral
domain energy detection as the discussions in Section 2episted in Fig. 11, this
approach extracts the reconstructed spectrum in the fnreguwange of interest, e.g.,
Af, and then calculates the signal energy in the spectral domhé output energy
will be compared with a detection threshold (denoted\byo decide whether the
corresponding frequency band is occupied or not, i.e., singdetween hypotheses
741 (presence of primary users) auth (absence of primary users).

It can be easily understood that the performance of suchfaastructure will
highly depend on the recovery quality of the Fourier spentiu From the com-
pressed sensing theory, we know that the recovery qualitieisrmined by: the
sparsity level, the choice of measurement matrix, the reigoalgorithm, and the
number of measurements. The spectral sparsity level in aitbogyradio system
is mainly determined by the activities of primary users with specific frequency
range and the medium access control (MAC) of the cognitidéosa One elegant
metric for evaluating the suitability of a chosen measur@meatrix is the restricted
isometry property (RIP) [31]. For a comprehensive undediteg of RIP and mea-



18 Hongjian Sun, Arumugam Nallanathan, and Jing Jiang

Frame 1 Frame 2 | Frame 3 Frame 4 | Frame 5 XXX

T ) A-T

ELELSLEEIIEISLEESIEI ISP LS
12]3]4]3]¢]7]3]0 PR

TTTTTTTT |:|
Spectrum Data
Sensing Transmission

A
A 4

&

Fig. 12 Frame of periodic spectrum sensing in cognitive radio netso

surement matrix design, we refer the reader to [32] and eéafmrs therein. In the
following, we will concentrate on addressing: the choicéhef number of measure-
ments and the design of the recovery algorithm. We will disan adaptive sensing
framework enabling us to gradually acquire spectral measants. Both the signal
acquisition and the spectral estimation will be terminaté@n certain halting cri-
terions are met, thereby avoiding the problems of excessiresufficient numbers
of compressive measurements.

4.2 System Description

Consider a cognitive radio system using a periodic spectmsing infrastructure
in which each frame is comprised of a spectrum sensing tioteasld a data trans-
mission time slot, as shown in Fig. 12. The length of each &&@W (seconds), and
the duration of spectrum sensindlig0 < T < A). The remaining timé&—T is used
for data transmission. Further, we assume that the spectemsing duratiof is
carefully chosen so that the symbols from primary userstla@dhannels between
the primary users and cognitive radios are quasi-statjoige propose to divide
the spectrum sensing duratidninto P equal-length mini-time slots, each of which
has lengttr = %, as depicted in Fig. 12. As enforced by protocols, e.g.,&aMAC
layer [33], all cognitive radios can keep quiet during the&pum sensing interval.
Therefore, the spectral components of the Fourier speckrunix arise only from
primary users and background noise. Due to the low speat@lpancy [13], the



Sub-Nyquist Sampling and Compressed Sensing in CognitakdNetworks 19

Table2 Compressed Adaptive Sensing (CASe) Framework

Input: Sensing duratiof, N, noise variancé?, thresholdw
accuracye in the noiseless case, accuraci the noisy case.
1. Initialize:
Divide T into P time slots, each has length= L, indexp = 0.
2. Whilethe halting criterion is false and < P, do
a). Incremenp by 1.
b). Perform compressive sampling in the time gatsing ratefs.
c). If p=1, partition the measurement vector into:
the training sey; and testing se¥ as in (12)-(13).
d). Concatenate the training sets from the time slots- 1p
to formY asin (13).
e). Estimate the spectrum fro¥fy, using spectral recovery algorithm
resulting in the spectral estimai(@.
f). Calculate the validation parameter usiigand¥:
o= ||V—‘4"F71>A<pH1'
3. Check and make decision:
If the halting criterion is true
a). Terminate the signal acquisition.
b). Perform spectrum sensing using the reconstructedrspe&).
¢). Choose un-occupied bands, and start the data tranemissi
Elseif p=P
a). Terminate the signal acquisition.
b). Report its reconstruction is not trustworthy.
¢). Increasefs and wait for next spectrum sensing frame.
end

N
. o \ 2 P : .
Halting Criterion: “;2= < @, in the noiseless measurement case.

lpp — /33| < &, in the noisy measurement case.

Fourier spectrunX can be assumed to tkesparse, which means it consists only
of k largest values that are not negligible. The spectral dydesiel k is unknown
except thak < knax, Whereknay is a known parameter. This assumption is reason-
able because the maximal occupancy of the spectrum canitmatessd by long-term
spectral usage measurements.

For simplicity, we name the adaptive compressed sensiagebaideband spec-
trum sensing approach as: compressed adaptive sensing[CRA& aim of CASe
is to gradually acquire compressive measurements, recehghe wideband spec-
trum X, and terminate the signal acquisition if and only if the eatrspectral recov-
ery performance is satisfactory. The work procedure of Ci&Sown in Table 2.
We assume that cognitive radio performs compressive mea&nts using the same
sub-Nyquist sampling rat& (fs < 2W) in all P mini time slots. In each time slot, an
m-length measurement vector would be obtained, where fs1 = %T is assumed
to be an integer. Without loss of generality, the measurémairices of time slots
are assumed to follow the same distribution, e.g., the stahdormal distribution,
or the Bernoulli distribution with equal probability af1. We partition the mea-
surement set of the first time slot into two complementarysstd) i.e., validating
the spectral recovery result using the testing suddsgt € C'*1, 0 < r < m) which
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is given by
V = YF1X (12)

and performing the spectral recovery using the trainingstya (y; € C(Mx1),
whereW € C"™*N denotes the testing matrix. The measurements of other tote s
i.e.,yi, Vi € [2,P], are used only as the training subsets for spectral recoway
concatenate the training subsets offatime slots as

Y1

Y2
Yo | | = oF X, (13)

Yp

whereY , € C(PM1)x1 denotes the concatenated measurement vebipdenotes
the measurement matrix aftprtime slots, andX, denotes the signal spectrum. It
should be noted thap, and the testing matri% are chosen to be different but have
the same distribution, and the signal spectipgis always noisy, e.g., due to the
receiver noise. We then gradually estimate the spectrum ¥¢,Y 5, --,Y , using

a certain compressed sensing recovery algorithm, leadiagsequence of spectral
est|mate9(l, X2, . Xp

4.3 Acquisition Termination Metric

We hope that the signal acquisition procedure can be tetedribwe find a good
spectral approxmatlob(p that makes the spectral recovery erfiof — Xpllz suffi-
ciently small. The remaining spectrum sensing time slogs,p+1,---,P, can be
used for data transmission. If this target can be achievedould not onIy improve
the cognitive radio system throughput (due to the longea ttahsmission time), but
could also obtain measurement savings, leading to botlygrerd computational
savings. However, the spectral recovery effr— Xp| 2 is typically not known as
X is unknown under the sub-Nyquist sampling rate. Hence, wisérg traditional
compressed sensing approaches, we do not know when we saouldate the sig-
nal acquisition procedure. In this chapter, we proposeédhsfollowing validation
parameter as a proxy fgiX — Xp||2:

-1 v
e v 9”': Xpll1 (14)
and terminate the signal acquisition if the validation paeterpp is smaller than a
predetermined threshold. This is based on the followingnlaion:
Theorem 1: Assume thaidq,---, ®p and¥ follow the same distribution, i.e.,
either the standard normal distribution or the Bernousitidbution with equal prob-
ability of +1. Lete € (0,3), £ € (0,1), andr =Ce~ 2Iog (Cis a constant). Then
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usingV for testing the spectral estima)f@, the validation parameter, satisfies:
N N N
Pr [(1— &)X~ Rpll2 < |/ Fpp< L+ )X~ Koo 21-&  (15)

whereé can also be written a&§ = 4exr(—%).

The proof of Theorem 1 is given in Appendix A.

Remark 1: In Theorem 1, we can see that, with either higheor greaterr,
we have higher confidence for estimating the actual spectalvery error|X —
Xp||2. Fig. 13(a) shows the influence of using different number edsurements for
testing the spectral estimate when the number of time stateases. The spectral
occupancy is assumed to be 6%, which means the spectratgpars| k = 6%N =
120 whereN = 2000. It can be seen that with more testing data, the vatidagsult
is more trustworthy. Furthermore, we can find that even wittb measurements for
testing, the validation result is still very close to theuadtecovery error. The choice
of parametelC in Theorem 1 depends on the concentration property of random
variables in the measurement mat#x For a good¥, e.g., the measurement matrix
with random variables following either the Gaussian or Beith distribution, C
could be a small number.

Remark 2: Theorem 1 can be used to provide tight upper and lower boumds o
the unknown recovery errdiX — Xp||2 by using (15) such that

%pp<||x Loll2 < V&P (16)
1te — pllz="1""%¢ "

Fig. 13(b) compares the actual recovery effdr— X,||2 and the validation param-

eter,/ %pp when the spectral sparsity level varies. It is evident thatvalidation

parameter can closely fit the unknown actual recovery efTitoe. upper and lower
bounds on the actual recovery error that we obtained in (&6)correctly predict
the trend of the actual recovery error even if eitpesr k vary. Fig. 13(b) also il-
lustrates that the lower the sparsity level, the fewer tiogsgthereby the fewer
compressive measurements) are required for reconstgubgérspectrum. When the
spectral occupancy is 12% (i.&= 12%dN = 240), the CASe framework requires
p = 7 mini-time slots, i.e.M = pm = 1400 measurements in total. On the other
hand, wherk = 100, onlyp = 3 time slots andl = pm = 600 measurements are
required. The remaining time slots can be used for datanresson, which can
therefore lead to higher throughput than the cognitiveaagistem using traditional
compressed sensing approaches. If we regdre X,||2 (unknown) to be less than
a tolerable recovery error threshaty we can let the upper bound on (16) to be a
proxy for|| X — )?p|\2. As shown in Table 2, we choose the upper bound on (16) as the
signal acquisition termination metric in the noiselesec#st is less than or equal

/ N
to the thresholdo, i.e., || X — Xp||2 < ngp < mw, the signal acquisition can be ter-
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Fig. 13 Comparison of the actual recovery error and the proposedatadn parameter when the
number of mini time slots increases: (a) different numbemefsurements for validation when
the spectral sparsity levél= 120, and (b) different spectral sparsity levels whea 50. It was
assumed that there is no measurement noise in the comressi&surements. The upper and
lower bounds on the actual recovery error are given in (16).
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minated. This approach, to some extent, decreases thehjlitdbés of excessive or
insufficient numbers of measurements.

4.4 Noisy compressed adaptive sensing

Due to either the quantization error of ADC or the imperfezsign of sub-Nyquist
sampler, the measurement noise may exist when performmgassive measure-
ments. In this section, th@ norm validation approach is further studied to fit the
CASe framework in the noisy case. After that, we present esgigeaware recovery
algorithm that can correctly terminate greedy iteratiomemwthe spectral sparsity
level is unknown and the effects of measurement noise aneagbigible.

In the noisy signal measurement case, the concatenatathiyaetY , and the
testing subse¥ can be written as

Yp=®pF Xp+n (17)

and
V=WF1X+n (18)

respectively, where the measurement naise additive noise (added to the real
compressed signal after the random projection) generatetiebsignal measure-
ment procedure, i.e., signal quantization. The measuren@se can be modeled
by circular complex additive white Gaussian noise (AWGN]Jthaut loss of gener-
ality, we assume thathas an upper bound and has zero mean and known variance
&2, i.e.,n ~€.4(0,5%). For example, if the measurement noisis generated by
the quantization noise of a uniform quantizer, the noisewaed? can be estimated
by A?2/12 andn < n= A, whereA denotes the cell width.

If pp is close enough tq/gé, the signal acquisition procedure can be safely
terminated. This observation is due to the following thewre

Theorem2: Lete >0,0>0,p€(0,1),v > —Vg/"rT—l, andr =1In (%) 3(477%;#'
If the best spectral approximation exists within the segeesf spectral estimates

X1,--- , Xp, then there exists a validation parameggthat satisfies

Pr[\/§6—8§0p§\/§6+£}>1—p, (19)

wherep is given byp = 2exp(—3(47n>532'%).

The proof of Theorem 2 is given in Appendix B.

Remark 3: It is worthwhile to note that Theorem 2 addresses the proldém
finding the best spectral approximation, iXp, = X*, that minimizes||X — Xp| 2
among all possible spectral estimates in the noisy cass.iF ldifferent from The-
orem 1, which focuses on finding a satisfactory spectramméf(p that makes

X —Xp||2 < win the noiseless case. Using Theorem 1, we should caretullgse
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the tolerable recovery error threshaidin order to avoid excessive or insufficient
numbers of measurements. In addition, in Theorem 1, théaelbetween the tol-
erable recovery error threshotd and the probability of finding the best spectral
approximation is unknown. By contrast, Theorem 2 showsitliaére exists a best
spectral approximation, the corresponding validatiorapeater should be within a
certain small range with a probability greater than g. Thus, if the result of The-
orem 2 is used as the signal acquisition termination mdtreejssues of excessive
or insufficient numbers of measurements can be solved.

Remark 4: If the best spectral approximation exists, the probabditfinding it
exponentially increases as the size of testing setK).m¢creases. It means that if we
monitor pp, we have a higher probability of finding the best spectratayimation
when using more measurements for validation. However, waldmote that there
is a trade off between the size of the training set and theddittee testing set for a
fixed sub-Nyquist sampling rate. On the one hand, a smallee., larger training
set for a fixedn) could result in better spectral recovery, while on the ottand, the
probability of finding the best spectral approximation éases asbecomes small.
In addition, for a fixed degree of confidence-p, we face a trade off between the
accuracye and the size of the testing setas shown in Theorem 2. At the expense
of the accuracg (i.e., largere), r can be small. We should also emphasize that, as
we can see in (34), linear increase of the standard deviatisifi lead to quadratic
growth in the size of the testing set. This is the reason whyskauld carefully
consider the effects of measurements noise in the validapproach.

4.5 Sparsity-Aware Recovery Algorithm

As the above discussions indicated, Theorem 2 can be usétefaifying the best
spectral approximation t&X from the spectral estimate sequerXgXy,---, Xp,
which is calculated by increasing the number of measuresnianthe proposed
CASe framework. We note that Theorem 2 can also be used foeiptiag over-
fitting or under-fitting in greedy recovery algorlthms Gdyeecovery algorithms
iteratively generate a sequence of estlma%ﬁ(p, . where the best spectral
estimate may exist under certain system parameter ch(ﬁoeexample, the OMP
algorithm chooses one column from the measurement mataxtiate for recon-
structingX fromy. Aftert = k iterations, thek-sparse vectoX* will be returned as
an approximation tX. Note that OMP requires the sparsity lekels an input, and
such an input is commonly needed by most greedy recoveryitidgts. However,
the sparsity levek of the spectrum in the cognitive radio system is often unkmow
and therefore traditional greedy compressed sensingitiigw will result in either
early or late termination of greedy algorithms. Then thebfgms of under-fitting
and over-fitting arise, leading to inferior spectral reagveerformance. In order
to reconstruct the full spectrum in the case of unkndwmwe propose to use the
testing set for validating the spectral estimate seque(uécﬁz, Xt and termi-
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Table 3 Sparsity-Aware OMP Algorithm

Input: training setY , testing se¥, measurement matrig,,
testing matrixy, noise variancé?, accuracye, kmax.
1. Initialize:
Index setA® = 0, residuaR? = Y, and iteration index = 0.
Let p;J =Cy (Vt € [0,kmax]), WhereC; is a large constant.
2.V\/hi|e\p§,f /30| > € andt < Knmay, do
a). Increment by 1.
b). Find the index! that solves the optimization problem:
At=arg max_; .. n| <R @p > |
c). Augment the index set' = A'"1U{A!}, and revise
the matrix@‘p = ®,(AY) by only selecting the column
index belongs ta\!, other columns are all zeros.
d). Solve a least squares problem:
XL = arg mirk ||Y p — OLF X 2.
e). Calculate the validation parameter usihgnd¥:
¢ IV=WF XL
Ph= "2
f). Update residual:
Ry =Y, — @pF XL
Output: X, = arg mirg Ioh— /53], Vt € [1knay

nate the iterations if the current validation parametesfas the conditions given
in Theorem 2.

As shown in Table 3, we present a sparsity-aware OMP algori®ne important
advantage of the proposed algorithm is that it does not reghe instantaneous
spectral sparsity leved, but requires instead its upper boukgyx which can be
easily known. In each iteration, the column indexe [1,N] that has the maximum
correlation between the residual and the measurementweittibe found, and
be merged with the previously computed spectral supporomm fa new spectral
supportAt. After that, the full spectrum is recovered by solving a tesguares

problem as shown in the stepd}-of Table 3. Note tha®® e ®p(AY) is the sub-
matrix obtained by only selecting the columns whose indaeswithinAt in the
matrix ®@p, while other columns are set to all zeros. For a spectrainaw)?;,
we validate it by using the validation paramerzc{;, which can be calculated by
using the testing seé¥ and the spectral estimaﬁa{J as shown in the step &-of
Table 3. The residual is then updated. We emphasize thatrtpoged algorithm
monitors the validation parametg}, instead of the residugR, ||> < @ as used in
the traditional greedy recovery algorithms. Based on Téxed?, if the best spectral
estimate is included in the spectral estimate sequEpce?. -, X}, the probability

of finding it will be greater than + 2exp(—3(47m635%). In other words, the
probability of under-/over-fitting is less than or equal M(—M%) ,

and becomes smaller asncreases.
For the proposed spectral recovery algorithm, there is gpkegmeter we need
to know, i.e... The following quadratic equation regardiadpolds by using (33):
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Fig. 14 The effects of measurement noise on both the actual recameoy and the proposed
validation parameter when the SMNR varies. The spectrabigpdevel was set t& = 120.

r-ez—@m(%)6v-e—(4—n)|n(%>6220. (20)

It can be easily determined that the discriminant of the alspadratic equation is
positive, so there are two distinct real roots. The follogyositive root can be used
to determinee:

+

V21 (g) Sv+ 5\/2n|n2 (g) v2+36(4— m)ln (g) r

6r (1)

£ =

where[x] ™ denotes ma, 0).

4.6 Numerical Results

In our simulations, we adopt the wideband analog signal tiad27] and let the
received signak(t) at a cognitive radio to be of the form
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X(t) = % VE B -sinc(B(t— a)) - cos(2mfi (t — a)) + z(t) (22)
=1

where sin¢x) = S o denotes a random time offset smaller thfe, z(t) is

AWGN (i.e.,z(t) ~ .47(0,1)), andE; is the received power for the subbdrat cog-
nitive radio. The received signa(t) consists o, = 8 non-overlapping subbands.
Thel-th subband is in the frequency range §f-f %, fi+ %], where the bandwidth

B, = 10~ 30 MHz andf; denotes the center frequency. The center frequency of the
subband is randomly located withirj%,W— %] (e, fi € [%,W— %]), where

the overall signal bandwidW = 2 GHz. Therefore, the Nyquist rate fs= 2W =

4 GHz, and the spectral occupancy (i.észv\}—&) is a random number between 4%
and 12%. We emphasize that the spectral occupancy of£4%% in our simula-
tions is very close to the spectral measurements in New Ydykas noted above.
The received signal-to-noise ratios (SNRs) of these 8 aatilbbands are random
natural numbers between 5 dB and 25 dB. The spectrum sensmagjah is cho-
sen to bel =5 us, during which the symbols from primary users and the chianne
between the primary users and cognitive radios are asswnisslduasi-stationary.
We then divideT into P = 10 mini time slots, each of which has= % =05 pus.

If the received signak(t) were sampled at the Nyquist rate, the number of Nyquist
samples in each time slot would b= 2WTt = 2,000. It can be calculated that
the spectral sparsity levklis in the range of 4% N =80 < k < 12%x N = 240.

In the proposed framework, rather than using the Nyquistpdiagnrate, we adopt
the sub-Nyquist sampling ratlk = 400 MHz; thus, the number of measurements
in each time slot isn = fst = 200. In other words, the undersampling fraction in
each time slot isn/N = 10%. For the purpose of testing/validations= 50 mea-
surements in the first time slot are reserved, while the neimgimeasurements are
used for reconstructing the spectrum. The measuremenicesti.e.,®, and¥,
follow the standard normal distribution with zero mean and variance. Due to
the imperfect design of signal measurement devices, thesunement noise may
exist. In the noisy case, the measurement noise is assunieddiocular complex
AWGN, i.e.,n ~ .4 (0,5%). As the measurement noise in this chapter is mainly
due to the signal quantization in the ADCs, we set the sigpraheasurement-noise
ratios (SMNR) to be 50 dB and 100 dB. This is because the SMNiReofiniform
quantization increases 6 dB for each one-bit; thus, the SMNRDbit quantization

is 48 dB and the SMNR of 16-bit quantization is 96 dB, which approximately
50 dB and 100 dB.

Firstly, we consider the effects of measurement noise tb tha spectral recov-
ery quality and the validation parameter. In Fig. 14, thectpésparsity level is set
to k =120. We can see that, in either the noiseless measuremenbictse noisy
measurement case, the proposed CASe framework can ragdrikl spectrum us-
ing 6 time slots. The spectral recovery quality becomes &vorisen the measure-
ment noise level increases. In the noiseless case, theg@dpalidation parameter
can closely fit the actual recovery error. By contrast, theeaegap between the actual
recovery error and the validation result when the measunenwse exists. This is
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Fig. 15 Comparison of the validation parameter and the actual ssgarror when the best spec-
tral approximation occurs. The dash line denotes the pediicalidation value, i.e.\/gé (scaled
standard deviation), as used in Theorem 2.

because, on the one hand, the actual recovery é¥or Xp||2 can be very small,
e.g., 101 in the case of best spectral approximation, on the other itaedvali-
dation parameter is mainly determined by the noise levehaws in Theorem 2.
This implies that the effects of measurement noise shoulcbbefully considered
even if )?p is the best spectral approximation. In Fig. 15, it is seen Wieen the
best spectral approximation occurs (i.e., the actual regoerror is small enough),
the validation parameter is very close to the scaled noaedsird deviation, i.e.,
\/7—276. This observation validates the results of Theorem 2. If/dllation method
is used for designing the termination metric of the signglégition, such as in the
algorithm given in Table 2, the problems of insufficient ocessive numbers of
measurements can be solved.

Secondly, Fig. 16 analyzes the spectral recovery perfoceaen using differ-
ent compressed sensing approaches. In these simulatioogiér to find the best
spectral approximation with high confidence, the accuracgimetee in (19) is set
to /2 and the number of testing measuremenisis50. As depicted in Fig. 16(a),
the proposed CASe framework can adaptively adapt its nuofhmeasurements to
the unknown spectral sparsity levelThe corresponding spectral recovery perfor-
mance is shown in Fig. 16(b), where the spectral recoveryagaare error (MSE)
of different compressed sensing approaches is given. Weamthat, even with the
total number of measuremens= 1300, the performance of the traditional com-
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Fig. 17 Examples of the reconstructed spectrum when using diffesmovery algorithms. The
spectral sparsity level was assumed t&be150, with the total number of measuremelits= 800.
The received SNRs of these 8 active subbands were set tomanairal numbers between 5 dB
and 25 dB. The SMNR was set to 50 dB.

pressed sensing system is inferior to that of the proposeSeCffamework as the
traditional compressed sensing system cannot deal withabe ofk > 200. Note

that, if we assume that the spectral sparsity lévkhas a uniform distribution be-
tween 80 and 240, the average number of measurements egyi@ASe is 900.
Compared to the traditional compressed sensing systeniMuitl000, it is obvious

that the CASe framework has much lower MSE for mosk ef[80,24(0.

Thirdly, Fig. 17 shows examples of the original spectrum dredreconstructed
spectrum when using different spectral recovery algorithire., OMP and the pro-
posed algorithm. We can see that the recovery performantteegiroposed algo-
rithm is superior to that of the traditional OMP algorithms #e sparsity level is
unknown and has the range of 80k < 240, if the OMP algorithm is used, the
problems of either under-fitting (i.e., iteration is teraied earlier ak is under-
estimated) or over-fitting exist. As the problem of undeir could lead to the
missed detection of primary users which may cause harnteifarence to primary
users, the traditional OMP algorithm should prevent theewsfitting from occur-
ring, and tends to choose more number of iterations. In tee ohover-fitting, the
traditional OMP algorithm will result in a “noisy” reconsitted spectrum as de-
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picted in Fig. 17(c). With the aid of the testing set, the m®gd approach has an
improved recovery performance as shown in Fig. 17(d). Caoetpaith the OMP al-
gorithm, the proposed algorithm provides better specstabate, and is much more
similar to the best spectral approximation in Fig. 17(b)s ivorthwhile to empha-
size that the proposed algorithm will have more noticeaflprovement over the
OMP algorithm when there is larger uncertainty in the sgsjparsity levek.

Finally, Fig. 18 further explores the performance of diffier recovery algo-
rithms. In order to illustrate the performance of CASe whsing different recovery
algorithms, the MSE of the reconstructed spectrum is gindrig. 18(a). It can be
seen that the gain of using the proposed algorithm over OMBpsoximately one
order of magnitude in MSE. This is because the proposeditigocan terminate
the iteration at the right iteration index; by contrast, whsing OMP, the problems
of either under-fitting or over-fitting exist, leading totet incomplete spectral re-
covery or noisy spectral recovery. As a consequence, weaaifrem Fig. 18(b)
that, for a fixed SMNR=50 dB, the proposed algorithm has moetet recovered
error rate than the OMP algorithm. We note that the recoverext rate is defined
as the probability of simulated mean MSE larger than thestaWtSE.

4.7 Discussions and Conclusions

4.7.1 Discussions

The CASe framework shares its goals with some recent effioatshave looked at
testing the actual error directly from compressed data./3morm cross validation
approach for compressed sensing has been studied by Wgrdaf@dBoufounos
et al. [35]. These results are very remarkable as they allow us ribywhe actual
decoding error with almost no effort (i.e., a very few measoents are reserved for
testing). We note that the results here are different froosehin these papers. In
particular, we have studied a different validation appmae., the/; norm is used
for validating the recovery result, rather than thenorm. In addition, the effects of
measurement noise were carefully considered in our asalggi contrast, Ward’s
validation approach did not model the effects of measurémase. When the pro-
posed/, norm validation approach is used in compressed sensingaéadies, it
could be a useful complement to the work in [34, 35]. It shai&b be emphasized
that, compared to thé&, norm validation approach, the proposgdnorm valida-
tion approach is less sensitive to outliers. As shown in Effa), when outliers
exist in the testing set, the validation parameter of usirgyf norm is one order
in magnitude lower than that of using tkig norm. Moreover, we note that using
compressed sensing technologies for wideband spectrusingen a cognitive ra-
dio system, we cannot avoid outliers. This is because the AD®t a noise-free
device, and the non-linearity of ADC could be a source of gativeg outliers. Fur-
thermore, in a real-time compressed sensing device suble asridom demodulator
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in [26, 29, 30], imperfect synchronization of the pseudod@n sequence generator
and the low-rate ADC could result in outliers.

A natural technique for choosing the stopping time of the sneement would
be sequential detection [36], in which we collect one sangpla time until we
have enough observations to generate a final decision. Hoyee note that, in the
compressed sensing-based spectrum sensing system, tlemsagmeasurements
cannot be directly used for performing sequential tests Thbecause, due to the
sub-Nyquist sampling, there exists spectral aliasing phmon, which makes fre-
guencies become indistinguishable. Thus, in order to aggafyiential detection, the
wideband spectrum should be reconstructed before eackrségjuest for avoiding
spectral aliasing. In such a scenario, sequential detectiald lead to high compu-
tational costs. Malioutoet al. [37] have studied a typical compressed sensing-based
sequential measurement system, where the decoder caverecmipressed samples
sequentially. It has been shown that such a system can sfigkgestimate the cur-
rent decoding error by using some additional samples. Neslesss, it is not proper
to apply the compressed sensing-based sequential measrsetup in cognitive
radio systems. Because, in this scheme, the wideband spestrould be repeat-
edly reconstructed for each additional measurement thdd dead to high compu-
tational costs and large spectrum sensing overhead in tbagradios. For exam-
ple, using the CoSaMP algorithm [28], the running time infeseconstruction is
O (BN), wheref denotes the current number of measurements. Thus, theuatal

ning time for the sequential measurement setuﬁﬂw), whereM denotes
the number of measurements till the termination of measen¢énBy contrast, in
our proposed system, the spectrum sensing time slot isathiittoP equal-length
mini-time slots, and the wideband spectrum is reconstduafter each mini-time
slot. The total running time of the proposed system is thm!mf’(wpi;m‘), where
P <« M. Fig. 19(b) shows that the spectrum sensing overhead (dtretspectral
reconstruction) of the sequential compressed sensingmayistseveral times higher
than that of the proposed system. Furthermore, anothentaty@ of the proposed
system is that, by changing the length of mini-time slot ¢tthe value oP because
P= %), we can control the trade-off between the cost of computeadind the cost
of acquiring additional measurements.

4.7.2 Conclusions

We have presented a novel framework, i.e., CASe, for widélspactrum sensing in
cognitive radio systems. It has been shown that CASe carnd=mably improve the
spectral recovery performance when the sparsity level@§fectrum is unknown,
thanks to the/; norm validation approach. We have shown that the proposied va
dation parameter can be a very good proxy for the actual igd@etovery error in
the noiseless measurement case even if the testing setllsBnegproper use of the
validation approach could solve the problems of excessivesufficient numbers
of measurements, thereby improving not only the energgieffcy of cognitive ra-
dio, but also the throughput of cognitive radio networksadidition, we have shown
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that, in the case of noisy compressive measurements, ietstespectral approxima-
tion exists, then the corresponding validation paramedsrahwery large probability
of being within a certain small range. Based on this properéyhave proposed a
sparsity-aware recovery algorithm for reconstructingwigeband spectrum with-
out the knowledge of the spectral sparsity level. In the psepl algorithm, if the

best spectral approximation exists, then the correcttitardaermination index can

be found with high probability; therefore, the issues of emtbver-fitting are ad-

dressed.

Simulation results have shown that the proposed framewamicorrectly termi-
nate the signal acquisition that saves both spectrum sgtisie slots and signal
acquisition energy, while providing better spectral resrg\performance than tradi-
tional compressed sensing approaches. Compared withidtmg)greedy recovery
algorithm, the proposed sparsity-aware algorithm caneseHbwer MSE for recon-
structing the spectrum and better spectrum sensing peaftzen As the RF spec-
trum is the lifeblood of wireless communication systems #rmewideband tech-
niques could potentially offer greater capacity, we expleat the proposed frame-
work has a broad range of applications, e.g., broadbandrgpanalyzers, signals-
intelligence receivers, and ultra wideband radars. Maggdhe proposeé; norm
validation approach can be used in other compressed seagpiigations, e.g., a
compressed sensing based communication system where deaegminate the
decoding algorithm with high confidence and small predietalecoding error.
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Appendix
Proof of Theorem 1

Using a variant of the Johnson-Lindenstrauss lemma as showheorem 5.1 of
[38], we have

Pfl(l—f)HXllz < el <(1+ £)||X||2] >1-¢. (23)
2/mr

Definingx £ F~1(X — Xp) in (23), we obtain

|\WF71(X—>A(p)|\1

\2/mr

The above inequality can be rewritten by using (12) and (14)

< (1+g)F X =Xp)l2| = 1-¢&.
(24)

Pr l(l— e)IF (X =Xp)2 <
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Pr [<1fs>uF*l<>< ~Zo)llo < @pp < (1t e)F X %)HZ} S1-6 (25)

Applying Parseval’s relation to (25), we have

. N 5
Pr {(1— E)IX=Xpllz <4/ —-pp < (1+ &)X = Xpll2

Thus, Theorem 1 follows.

=1-¢. (26)

Proof of Theorem 2

The best spectral approximatioff means thaf|X* — X|[2 is sufficiently small.
Without loss of generality, we approximaXeé by X. Thus, ifX; is the best spectral
approximation, the validation parameter can be rewritiending (18)

|V —-WF~ lXplll nfla yl_q |0

r r r (27)

Pp=

As the measurement noise ~ ¢.47(0,52), its absolute valuén'| follows the
Rayleigh distribution with mear\/_é and variance®5” 52 Using the cumula-
tive distribution function of the Rayleigh distribution e/have Piin'| <x)=1-

exp(— W) Further, as the measurement noise level has an upper-lbaomtac-
tice, there exists a sufficiently large parameté¢nat makesn'| < n< (v +1) V3o
almost surely. If we define a new varialide = |n'| — /78, we obtainE[Dj] = 0,

E[D?] = 4 4752, and|Di| < \/Fdv. Based on the Bernstein’s inequality [39], the
following mequallty holds

_2Di >£] = Pr[i|ni|—r\/§5 >£] (28)
£2/2
< 200~ 5 miBars) )
3¢?
= ZeXp(_ 3(4—mré2+ \/Zreav> 30)

whereD = /7 v denotes the upper-bound b |.
Simply replacinge by re in (30) while using (27), we can rewrite (30) as

3re?
Pr >¢g| <2ex 31
{pp \/7 ‘ ] p( 3(4—md2++2 7T85V> (31)
Using (31), we end up with
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Pr{p —\/ﬁé‘ <£} >1—2exp<— 3re? ) (32)
PoV27 = 3(4— m)d2+2medy )

To derive the required, we set the lower probability bound in (32) as

3re?
1-2expl — =1-p. 33
p( 3(4—m)o2+ \/27T£5V> p (33)

Solving the above equation, we obtain

f—In (2) 3(4—n)52+\/ﬁ£5v.

0 3¢e2

(34)

This completes the proof of Theorem 2.
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