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A B S T R A C T

Biogas upgrading is a widely studied and discussed topic and its utilisation as a natural gas substitute has gained
a significant attention in recent years. The production of biomethane provides a versatile application in both
heat and power generation and as a vehicular fuel. This paper systematically reviews the state of the art of biogas
upgrading technologies with upgrading efficiency, methane (CH4) loss, environmental effect, development and
commercialisation, and challenges in terms of energy consumption and economic assessment. The market si-
tuation for biogas upgrading has changed rapidly in recent years, making the membrane separation gets sig-
nificant market share with traditional biogas upgrading technologies. In addition, the potential utilisation of
biogas, efficient conversion into bio-compressed natural gas (bio-CNG), and storage systems are investigated in
depth. Two storing systems for bio-CNG at filling stations, namely buffer and cascade storage systems are used.
The best storage system should be selected on the basis of the advantages of both systems. Also, the fuel economy
and mass emissions for bio-CNG and CNG filled vehicles are studied. There is the same fuel economy and less
carbon dioxide (CO2) emission for bio-CNG. Based on the results of comparisons between the technical features
of upgrading technologies, various specific requirements for biogas utilisation and the relevant investment, and
operating and maintenance costs, future recommendations are made for biogas upgrading.

1. Introduction

Biogas is produced by anaerobic degradation of organic compounds
and could be the substitute for natural gas and fossil fuels. It contains
mostly three components, which are methane (CH4), carbon dioxide
(CO2) and nitrogen (N2). However, other trace species exist as well,
which are hydrogen sulphide (H2S), hydrogen (H2), nitrogen (N2),
ammonia (NH3), oxygen (O2) and carbon monoxide (CO). Furthermore,
typical biogas is saturated with water, dust particles, siloxanes, aro-
matic and halogenated compounds [1,2], but the amounts of these trace

compounds are very low compared to CH4 and CO2. Various biogas
sources with their impurities levels are shown in Table 1.

Biogas can play a major role in the developing market for renewable
energy and it is estimated that biogas usage in the world will be dou-
bled in the coming years ranging from 14.5 gigawatts (GW) in 2012 to
29.5 GW in 2022 [7,8]. The demand for renewable fuels is increasing
with growing concern about environmental problems due to the high
greenhouse gases (GHGs) emission from fossil fuel combustion [9–12].
Purified biogas can be used in various applications such as the pro-
duction of electricity, heat and steam generation in household and
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industry, injection into the natural gas grid as well as a vehicular fuel.
Biogas production in Europe was estimated at 6 million tons of oil
equivalents (Mtoe) in 2007 and it is expected to increase to 23 Mtoe by
2020 [13] and [14,15]. As a result, 60% reduction in GHGs emission is
expected after 2017 [16]. In addition, the European Union (EU) coun-
tries have set a goal of supplying 20% of European energy demand
using renewable energy systems (RES) by 2020 and at least 25% of
bioenergy will be produced by biogas [17,18]. Besides, it is estimated
that the world share of bio-compressed natural gas (bio-CNG) in all
vehicular fuels will rise up from 2% today to 27% in 2050 [19,20].
Global climate changes caused by CO2 emissions are currently debated
around the world. Therefore, greener sources of energy are being re-
quired as alternatives to replace fossil fuels [21–24]. Different tech-
nologies for biogas upgrading have been developed to date and some of
them are commercially available. The technologies that are used com-
mercially for biogas upgrading today are pressure swing adsorption,
high pressure water scrubbing, organic solvent scrubbing, amine
scrubbing, membrane separation and cryogenic separation which are
briefly described in the next section. The selection of suitable tech-
nology by considering the efficiency and economy of a specific appli-
cation is important [25,26].

IEA Bioenergy, an international collaboration on bioenergy under
the International Energy Agency (IEA), has investigated various re-
newable energy tasks, concentrating on updating the raw biogas for
various applications but did not intend to give detailed descriptions of
the technical or economic performance of the technologies [27,28]. The
Swedish Gas Technology Centre (SGC) is another group focused on
biogas upgrading research and it has published several reports on
commercially available technologies [29,30]. Biogas purification and
upgrading have also been a highlighted topic in scientific articles in
recent years [8,23,31–39]. Xiu and Shahbazi [36] summarised the state
of the art technology for producing and upgrading bio-oil, with the
focus on the hydrothermal liquefaction process. Abatzoglou and Boivin
[31] reviewed biogas purification with the focus on the removal of
contaminants, such as H2S, NH3, and siloxanes, but the removal of CO2

was only briefly mentioned. Weiland [32] presented an overview of the
complete biogas production and consumption chain but did not focus
on currently available upgrading technologies. Bekkering et al. [33]
studied the current status and future options of biogas upgrading
technologies but did not present the technical performance and eco-
nomic report on various upgrading technologies. Ryckebosch et al. [35]
reviewed different biogas upgrading technologies with the focus on
their operating conditions, drawbacks, and efficiency. Pertl et al. [34]
and Starr et al. [37] applied life cycle assessment (LCA) to biogas up-
grading. Bauer et al. [38] found that the market shares for biogas up-
grading technologies have been changed rapidly in recent years, amine
scrubbing is continuously achieving significant market shares, and a
competition between pressure swing adsorption (PSA) and high pres-
sure water scrubbing (HPWS). Kárászová et al. [8] reviewed membrane
separation processes for biogas and found that membrane gas per-
meation is able to compete with classical biogas upgrading technolo-
gies. However researchers still need to solve the challenges in using
membrane for the removal of volatile organic compounds (VOC) and
siloxanes from raw biogas. Sun et al. [23] encouraged more researches
on membrane separation process for economical biogas upgrading and
its utilisation as a vehicular fuel as it is more beneficial for the en-
vironment. Chen et al. [39] revealed that hybrid processes for biogas

upgrading are more efficient, where membrane separation is combined
with absorption, adsorption, and cryogenic technique. This combined
separation processes can improve the performance and reduce the op-
erational cost of the process. Although the production of biogas is a
well-established technology, its commercial utilisation as a vehicular
fuel is still limited because high purification is needed.

Meanwhile, the existing reviews and studies have explored the
concepts and comprehensively investigated the techno-economic per-
formance of biogas upgrading technologies, their developments, energy
requirements, market shares, environmental analysis, utilisation of
upgraded biogas, and conversion and storage of bio-CNG. Purified bio-
CNG is a substitute for CNG for automobiles [16,40]. Biogas utilisation
as a vehicular fuel is beneficial since the vehicles using bio-CNG have
CO2 emission 80% less than those using fossil fuels [41,42]. Sweden
and Germany are among the countries that already used bio-CNG as
vehicular fuel in the form of pure methane or mixed with natural gas
[8]. Also, the total global warming related to the bio-CNG utilisation is
approximately 20% less than that of CNG [16]. Bio-CNG storage is also
critical and important step as it affects vehicle filling time, mass of gas,
temperature, entropy generation, and energy consumption [43].
Therefore, one of the main contributions of this work is to provide in-
sights and guidelines regarding the biogas upgrading technology se-
lection based on the specific utilisation, efficiency, investment cost, and
operational and maintenance cost. In addition, this work also sum-
marizes the biogas utilisation and its conversion into bio-CNG and
highlights the potential benefits of bio-CNG as a vehicular fuel. Bio-
CNG has been explored as an alternative to fossil fuels. Lastly, various
methods of storage for bio-CNG are comprehensively discussed and
compared. Finally, based on the investigation and recommendations
main conclusions are drawn in this work.

2. Biogas upgrading and purification technologies

The technologies currently developed and available on the in-
dustrial scale for the upgrading of biogas include adsorption, absorption
(physical and chemical), membrane separation, and cryogenic. These
technologies are primarily used for CO2 separation while the pre-up-
grade stage is required to reduce the high concentrations of con-
taminants such as H2O, H2S, and siloxanes. Further classification of
these upgrading technologies is shown in Fig. 1. Also, major strengths
and weaknesses of these existing upgrading technologies are sum-
marised in Table 2.

2.1. Pressure swing adsorption (PSA)

Adsorption process involves the transfer of solute in the gas stream
to the surface of an absorbent material due to physical or van der Waals
forces. In pressure swing adsorption (PSA), some undesirable gases like
CO2 are separated from biogas under elevated pressure using adsorbent
materials. Later, the pressure is reduced to desorb the adsorbed gases
[44,45]. Carbotech, Acrona, Cirmac, Gasrec, Xebec Inc., and Guild
Associates are well-known companies which develop and commercia-
lise this technology at low and high capacity (flow rate of
10–10,000 m3/h of biogas). In PSA, H2S gas removing is a primary step
because it is considered as toxic to the process and adsorption of this
gas is normally irreversible [46]. Fig. 2 shows a simplified process flow
diagram for a PSA process.

Table 1
Guidelines for impurities removal for specific biogas applications.

Biogas CH4 (%) CO2 (%) N2 (%) O2 (%) H2S (ppm) Benzene (mg m-3) Toluene (mg m−3) Ref.

Landfills 45–62 24–40 1–17 1–2.6 15–427 0.6–35.6 1.7–287 [2–4]
Sewage digesters 58–65 33–40 1–8 <1 0–24 0.1–0.3 2.8–11.8 [2,5,6]
Organic waste digesters 60–70 30–40 1 1–5 10–180 0.1–1.1 3–7 [2]
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In this process, high methane concentration can be achieved
(95–99%). However, this process needs an extensive process control
and requires high investment and operational costs [44,47]. Also, im-
purities in the raw biogas stream affect the efficiency of the process
[48]. To reduce CH4 losses in the desorbed gas, the system should be
designed in such a way that desorbed gases recirculate to PSA process.
Temperature swing adsorption (TSA) and electrical swing adsorption
(ESA) are the other types of adsorption (Fig. 1). The temperature in TSA
is enhanced at constant pressure, while in PSA, the pressure is reduced
[49,50]. TSA requires thermal energy to regenerate the adsorbent ma-
terial while in PSA compression energy is used. Thus, TSA could be a
better option if a cheap source of energy is available. Carbon cryogel
microspheres (CCM) and carbon xerogel microspheres (CXM) have been
identified as efficient absorbent materials for TSA process due to their
highly porous and stable structure [51]. In ESA, the regeneration is
carried out by passing electricity through the saturated adsorbent and
the heat generated by Joule effect facilitates the release of CO2 [52].
Although this process has the potential to reduce the cost of CO2 cap-
ture compared to TSA and PSA, electrical conductivity is required for
the absorbent used. Activated carbon has been developed as a new type
of semiconductor adsorbent with large surface area and micropore
volume [53,54].

2.1.1. Adsorbents
By a proper choice of adsorbent, the process can remove CO2, H2S,

moisture, and other impurities from biogas either selectively or si-
multaneously. The adsorbent materials are the core of PSA process thus
their engineered selection is very important to achieve high selectivity
of CO2. Molecular sieve materials such as zeolites and activated carbon
are commonly used adsorptive materials for biogas upgrading [55]. The
pores of these adsorbents are responsible for easy penetration of CO2

while retaining CH4 molecules. This is due to different sizes of CO2 and
CH4 molecules and also their adsorption capacity [56,57]. Cationic

zeolites are commercially available adsorbents for biogas upgrading
due to their small pores. Zeolites denoted with the LTA (Linde type A)
IZA code, like Linde 4A and 5A types, are reported in the literature to be
used for the upgrading of biogas and in particular, for the separation of
CO2 from CH4 [58–61]. Recently, 13 X molecular sieves are applied
successfully to upgrade biogas with moderate resistance to humidity
[54]. Pandey and Fabian [62] used zeolite-Neapolitan Yellow Tuff
(NYT) for the purification of natural gas and reported that 0.4 kg of CO2

could be adsorbed per kg of NYT at ambient conditions. During this
process, the H2S was also reduced. Zeolitic imidazolate frameworks
(ZIFs), a sub-class of metal-organic frameworks (MOFs) have recently
gained much attention to be used for the adsorption of CO2 due to their
intrinsic characteristics such as tuneable pore size, large pore volumes,
and large surface area [63]. Biogas can also be upgraded using silica,
alumina, activated carbon, or silicates, which are also known as mo-
lecular sieves [64].

The adsorbent material used for this process is desired to have the
following properties:

(1) The surface of the adsorbent should be basic so can be easily
attracted by CO2 acidic gas. These types of materials are known as
equilibrium-base adsorbents because main driving factor is the differ-
ences of interaction forces between CO2 and CH4 with the surface of the
adsorbent. (2) The pores of the adsorbent should be modified in such a
way that CO2 (kinetic diameter of 3.4 Å) can easily penetrate into their
structure while larger CH4 molecules (kinetic diameter of 3.8 Å) are
constrained to pass through them. These materials are reported as ki-
netic adsorbents since its main selectivity is due to diffusion constrain.
(3) Material should be easily regenerated or desorbed with low energy
demand. (4) It should have a good moisture removal capacity.

2.2. Absorption

Absorption depends on the solubility of various gas components in a

Fig. 1. Current technologies for biogas upgrading.
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liquid solvent. Raw biogas meets a counter-flow of liquid in a column
that is filled with packing material to increase the contact area between
gas and liquid. In biogas upgrading, CO2 is more soluble than CH4 in

liquid, thus the gas that leaves the column has a high concentration of
CH4 while the liquid leaving the column has an increased concentration
of CO2 [65]. High pressure water scrubbing (HPWS) and organic

Table 2
Advantages and disadvantages of different biogas upgrading technologies.

Technology Advantages Disadvantages

PSA 95–99% CH4 concentration [39] High capital investment and operational costs (due to a number of
columns in PSA unit) [39]The humidity of the raw biogas can be removed [44]

Less energy demand with low emissions, elimination of nitrogen and oxygen is also
possible [55]

H2S elimination step is needed and tail gas from the process needs to be
treated [27,55]

Clean and water-free gas [48] Water should be removed before PSA process [44]
Relatively fast installation and easy start up [38] Susceptible to fouling by impurities in the biogas stream [48]

High CH4 losses when valves malfunction [38]

HPWS >97% CH4 concentration [39] High investment and operating costs [39,55]
Removal of both CO2 and H2S [55] Less efficient [48]
No special handling and chemicals are required [48] Low flexibility toward variation of input gas [23]
Easy in operation with low CH4 loses (< 2%) [23] Slow process [1]
Tolerant for impurities [35] High pressure, need higher energy to compress the gas and to pump

water [35]Regeneration of water is possible [32]
Requires a lot of water even with regeneration [32]
Clogging due to bacterial growth [39]
Corrosion problem due to H2S [31]

OPS >97% CH4 concentration [39] Complex operation with high investment and operational costs [39]
Remove organic components such as H2S, NH3, HCN, and H2O [48] Expensive for small -scale applications [48]
Low CH4 loss [38] Reduced operation when dilution of glycol with water [35]

Need high energy to regenerate the solvent [38]
Solvent is expensive and difficult to handle [8]
Solvent regeneration is difficult if H2S is not removed first [33]

CSP >99% CH4 concentration with low operational costs [39] High investment cost and heat is required for regeneration of solvent
[39,55,67]

Complete H2S removal is possible and can operate at low pressure [55] Problems of contaminant build-up, corrosion, and amine breakdown
[48]

High selectivity for CO2 with low CH4 loss [48] Waste chemical may require treatment [35]
The process is faster than water scrubbing and solvent is easier to regenerate [1]

MS Less operational and capital investment costs and high CH4 recovery up to> 96% [39] For high purity product, multiple steps of membrane are required [39]
Small space requirements and available at low capacities [8,30]. Low CH4 yield in single step [55]
Easy maintenance without Low membrane selectivity [103]
hazardous chemicals [82] Not suitable for high purity
Low maintenance cost [100] needs [31]
Simple and environmentally friendly process [101] Consumes more electricity per unit of gas produced [1]
Ease of process with low
energy consumption [102]
Fast installation and start up [55]
Highly reliable and cheap process [103]

CS High purity of CH4 with 98% concentration [35] High investment, maintenance and operational costs [104]
CO2 purity is also high and High energy requirements [1]
can be used as a dry ice [1] Use of different expensive process equipment [38]
Low energy and cost is required to obtain highly pure liquefied biomethane (LBM) with
less than 1% CH4 loss [104]
Environmentally friendly technique with no chemicals use [46]

Fig. 2. Process flow diagram of pressure swing adsorption pro-
cess.
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physical scrubbing (OPS) are types of physical absorption, while amine
scrubbing (AS) and inorganic solvent scrubbing (ISS) are types of che-
mical absorption [39] as shown in Fig. 1.

2.2.1. High pressure water scrubbing (HPWS)
High pressure water scrubbing (HPWS) is the most common and

well-established technology used to remove CO2 and H2S from biogas
since these gases are more soluble in H2O than CH4. The operating
pressure of the HPWS is 10 bar [66] where biogas is fed into the bottom
of a packed column while water is fed counter-currently as shown in
Fig. 3. The physical absorption of the gases is governed by Henry’s law,
which states that at a constant temperature, the amount of any dis-
solved gas is directly proportional to its partial pressure in the gas
stream. It is also observed that solubility of CO2 can be increased at low
temperature [27].

This process also is also useful for the removal of H2S because H2S is
more soluble than CO2 in water [31]. Wastewater leaving the bottom of
the scrubber is saturated with CO2 or H2S and a small amount of CH4 is
regenerated and recirculated back to the absorption tower. Regenera-
tion is accomplished by reducing the pressure or by stripping with air in
a desorption column. Stripping with air is not recommended when H2S
concentration level is high since the water rapidly becomes polluted
with elementary sulphur which causes corrosion and operational pro-
blems. It is preferable to use fresh water if the cheap source of water is
available. Produced biomethane is saturated with water so the drying

process is mandatory for final upgrading [67,68]. When a high con-
centration of H2S is present in the gas stream then pre-removing of H2S
is a mandatory step in water scrubbing process like in PSA [23]. Al-
though it is an eco-friendly and highly efficient process with no special
chemicals requirement and high methane recovery (> 97%), high in-
vestment and operational cost are required. In addition, high energy
consumption is required during water regeneration process, which
leads to high costs [69].

2.2.2. Organic physical scrubbing (OPS)
Organic physical scrubbing (OPS) has the same principle as water

scrubbing, but it uses an organic solvent instead of water. Various or-
ganic solvents such as methanol (CH3OH), N-methyl pyrrolidone
(NMP), and polyethylene glycol ethers (PEG) are used to absorb CO2.
The solubility of CO2 is five times higher in PEG than in water for the
same upgrading capacity [70] which results in lower organic solvent
demand and less pumping requirement [39,71]. H2S, H2O, O2, N2, and
halogenated hydrocarbons are also removed together with CO2, but the
prior removal of H2S is recommended for this absorption process [55].
Selexol® and Genosorb® are examples of trade names for PEG liquids
used in organic physical scrubbing [48].

The biogas is compressed to 6–8 bar and cooled before it is injected
into the bottom of the absorption column. The organic solvent is sup-
plied to the top of the column to make a counter-current flow of gas and
liquid. It is also cooled before being injected into the column to

Fig. 3. Process flow diagram of high pressure water scrubbing.

Fig. 4. Process flow diagram of an organic solvent scrubber.
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maintain the low temperature in the absorption column around 20 °C
(Fig. 4). The organic solvent that leaves the bottom of the absorption
column is heat exchanged with the organic solvent that will be injected
to the top of the column. Then, the organic solvent is injected into the
flash column, where dissolved CH4 and some CO2 are released under
reduced pressure and circulated back to the inlet of biogas. To re-
generate the organic solvent, it is further heated to around 40 °C before
entering the desorption column. The solvent is injected into the top of
the column and the pressure is decreased to 1 bar. The regenerated
solvent is injected to the top of the absorption column. Although this
process is characterised by improved efficiency than water scrubbing in
terms of CO2 separation but more energy is required for the solvent
regeneration. Also, the cost of the organic solvents is significantly
higher than that for water [70].

2.2.3. Chemical scrubbing process (CSP)
Chemical absorption involves reversible reaction between absorbed

substances and solvent. The most common amines used as solvent for
removing acidic gases (CO2 and H2S) are diethanolamine (DEA),
monoethanolamine (MEA), and methyl diethanolamine (MDEA) [39].
Nowadays, a mixture of MDEA and piperazine (PZ), called as activated
MDEA (AMDEA), is commonly used in this process. The absorption
capacity of AMDEA is significantly higher compared to MDEA. The
possible reason is the presence of primary and secondary amines in PZ
and the tertiary amine in MDEA that gives high reaction rate for CO2

absorption. Typically, an amine scrubber system (Fig. 5) consists of an
absorber, where the CO2 is absorbed from the biogas and a stripper in
which the CO2 is separated from the waste amine solution by heating
under reduced pressure [72]. The raw biogas enters the absorber from
the bottom and the amine solution is supplied to the top of the column
to make a counter current flow contact. The CO2 in the biogas reacts
with the amine solution and is absorbed. This is an exothermic reaction,
which increases the temperature of the absorber from 20–40 to
45–65 °C [73]. Usually, the solubility of CO2 in H2O increases with
decreasing temperature [27] but in amine scrubbing (AS), the reaction
rate between CO2 and the amine solution increases with increasing
temperature, subsequently gives more absorption of CO2. The product
gas (CH4) exits from the top of the column. The operating pressure of
the absorber is 1–2 bar. The liquid from the bottom of the absorber is
going through the heat exchanger and pumped to the top of the stripper
column, where it is connected with the steam and CO2 is released. The
bottom part of the stripper column is equipped with a reboiler at
120–150 °C where amine solution is boiled. Reboiler provides the heat
of reaction for the release of CO2 from the waste amine solution and
regenerates the amine solution. Highly concentrated CH4 of> 99% gas

is obtained with low operational cost but high investment cost, and
significantly a massive heat is required for the regeneration of amine
solution [48]. If H2S is present in the raw biogas, it will be absorbed by
amine solution and higher temperature will be needed for the re-
generation to desorb H2S. Therefore, it is recommended to remove it
prior to the AS process. Another downside of this technology is the
requirement to treat waste chemicals, corrosion, and contaminant
build-up which makes the process more complex [74].

Inorganic solvent scrubbing (ISS) generally employs an aqueous
solution of alkaline salts such as sodium, potassium, ammonium, and
calcium hydroxides [75]. The absorption of CO2 in this alkaline solution
is assisted by agitation. The turbulence in the solvent and the contact
time between biogas and liquid increase the diffusion of the CO2 in the
solvent [39].

2.3. Membrane separation (MS)

During the last 40 years, the membrane-based gas separation pro-
cess has become the part of market share [76–78]. The membrane acts
as a permeable barrier that allows specific compounds to pass through
differently and control their permeability based on the applied driving
forces such as the difference in concentration, pressure, temperature,
and electric charges of different species. Generally, two models are used
to explain the membrane separation process such as solution-diffusion
and pore-flow model [79]. In the first model, permeates dissolve in the
membrane material and then diffuse through the membrane due to
concentration difference. Later in this process, permeates are separated
by pressure-driven convective flow through small pores [80]. However,
the solution-diffusion model is frequently used for gas transportations
in polymeric membranes [81]. For biogas upgrading, CO2 permeates
through the membrane while CH4 retains on the inlet side as retentate
(Fig. 6). The membrane gas separation could be more beneficial if the
gas flow is low and the inlet CO2 content is high. These considerations
are suitable for a typical biogas upgrading plant [82]. It is a cheap
process including low operating and capital costs, less demand for en-
ergy, and requires simple and compact membrane equipment set up
[83]. Polymeric, inorganic, and mixed matrix membranes (MMMs) are
three different types of membrane used for biogas purification as shown
in Fig. 1.

Most of the commercial membranes are polymeric made from or-
ganic materials such as polysulfone (PSf), polyimide (PI), polycarbonate
(PC), polydimethyl siloxane (PDMS), and cellulose acetate (CA)
[77,84]. They have excellent mechanical strength, easy to fabricate
with low cost, and high selective permeation. CA and PI based poly-
meric membranes are the mostly used commercial membranes for

Fig. 5. Process flow diagram of an amine scrubber.

I. Ullah Khan et al. Energy Conversion and Management 150 (2017) 277–294

282



biogas separation. Polyvinyl amine/polyvinyl alcohol blend membrane
was also tested and could achieve 98% CH4 purity [78]. CA membrane
is the first polymeric membrane commercialised for biogas purification
[85]. CA is relatively inexpensive due to an abundant and renewable
resource of cellulose with attractive separation properties. Therefore,
CA membrane has been commercialised for over 30 years. However, CA
membranes possess several limitations that restrict its use in gas se-
paration membrane. CA membranes are susceptible to plasticisation
(Pplasticisation = 8 bar) [86] due to its -OH rich functional groups that
easily dissolve CO2 within the membrane matrix. PI as a highly crys-
talline material is attractive for gas separation. It shows high perme-
ability and selectivity as well as high mechanical/thermal stability.
Matrimid® is commercially available PI with stiff polymer backbone.
Matrimid® is highly rigid and thermally stable, and thus suits the harsh
working environment. Despite its prevalence, Matrimid® is significantly
expensive and also susceptible to plasticisation (Pplasticisation = 17 bar)
[86]. Furthermore, PSf also possesses excellent mechanical strength and
high rigidity as well as acceptable gas pair selectivity and thus, be-
coming one of the most important polymeric membrane materials. Al-
though the separation properties of PSf are still lacking compared to PI-
based membrane, PSf is cheaper with high plasticisation resistance
(PPlasticisation = 34 bar) [86]. State of the art polymeric membranes are
economically competitive in separating CO2 and H2S from the biogas
compared to conventional technologies in both capital and operating
costs [39]. However, the investigation of polymeric materials for gas
separation has been challenged by the upper bound trade-off limit be-
tween permeability and selectivity. In fact, highly permeable mem-
branes are commonly accompanied by low gas pair selectivity and vice
versa [87].

Inorganic membranes are more advantageous compared to the
conventional polymeric membrane as they offer more mechanical
strength, thermal stability, and resistance against any chemicals.
Mostly, inorganic membranes facilitate permeability and selectivity,
exceeding the Robeson upper bound. There are several classes of the
inorganic membranes such as zeolite, activated carbon, silica, carbon
nanotubes (CNT), and metal-organic framework (MOF). Developing
continuous defect-free inorganic membranes, however, is the most
crucial step in inorganic membrane fabrication [88]. It is noted that the
fabrication of inorganic membranes is a stringent process and requires
continuous monitoring due to their fragile structure. For example, a
carbon membrane derived from a polymer precursor is often supported
by alumina or quartz to provide strength to the membrane before un-
dergoing pyrolysis. The rigid porous materials like carbon molecular
sieves and zeolites have difficulties in forming continuous and defect-
free membranes for practical applications in spite of their superior gas

separation properties [79,89,90]. It is clear that both polymeric and
inorganic membranes have limitations that motivate researchers to
develop new membranes. The developments so far are focused on in-
tegrating both polymeric and inorganic membranes known as mixed
matrix membranes (MMMs). MMMs are composite membranes con-
sisting of polymeric materials as continuous phase with inorganic par-
ticle as dispersed phase. It is predicted that the resultant membranes
have benefits owing to the combined advantages of both polymeric and
inorganic materials and overcome the limitations of each individual
phase [91,92]. Significant improvement in MMMs properties is ex-
pected due to the superior separation performance of inorganic parti-
cles combined with high processability and moderate processing cost of
base polymeric membranes. Excellent gas separation properties of
MMMs are the main driving force in the development of the novel gas
separation membranes [93–95]. The embedment of inorganic filler into
polymer matrix would introduce an additional mechanism to improve
the membrane performances. For example, using zeolite as a filler for
CO2 removal membrane would provide a molecular sieving mechanism
to further discriminate CH4 while specific interaction with CO2 provides
an improved surface diffusion across the membrane. The presence of
particles in the polymer matrix also increases the tensile strength and
thermal stability of the membrane. so the membrane can be applied at
harsh environment [96–98]. Thus, improvements in biogas separation
factor are expected where MMMs are applied. However, more in-
vestigations should be performed to enhance filler dispersion and
compatibility when it is incorporated into the polymeric phase.

Preremoval of H2S from raw biogas is necessary because it can ne-
gatively affect the membrane performance. The process for upgrading
biogas with membrane technology is shown in Fig. 7. Besides, water, oil
droplets, and aerosols are also needed to be removed by a filter before
the gas enters the membrane unit [27]. There is a need to develop a
system that separates CO2/CH4, H2S/CH4, and other traces impurities
simultaneously from raw biogas using different membranes. Also,
membrane separation process for biogas system should be further ex-
plored to facilitate easy operation with low energy demands using a
multistage membrane that is more economical for biogas upgrading.
The multistage membrane process has lower investment and operating
costs with high CH4 purity in comparison to the single stage process
[97]. Chen et al. [39] identified that CH4 recovery could be improved
from 80 to 99.5% using multistage membrane process. Still, in the area
of membranes for biogas separation, intensive research has been re-
quired to synthesise new membrane materials for efficient biogas up-
grading.

2.4. Cryogenic separation (CS)

Cryogenic separation of biogas is based on the principle that various
gases like CO2 and H2S liquefy under different pressure and tempera-
ture conditions. It operates under a very low temperature (−170 °C)
and high pressure (80 bar) condition. The boiling point of CH4 at 1 atm
is −161.5 °C that is much lower than the boiling point of CO2 which is
−78.2 °C and thus allowing the separation of CO2 from CH4 by lique-
fying it [1]. These operating conditions are maintained using a series of
compressors and heat exchangers (Fig. 8) [98]. The main drawback of
this process is the use of different process equipment, mainly turbines,

Fig. 6. Scheme of membrane gas separation process.

Fig. 7. Process flow diagram of membrane separation.
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heat exchangers, distillation columns and compressors which raise its
capital and operational costs [46] with high energy requirements.
Generally, four steps involve in a typical cryogenic system to upgrade
biogas to natural gas quality. Firstly, the moisture, H2S, dust particles,
halogens, siloxanes, and other unwanted components are removed from
the raw biogas. In the second step, the biogas is compressed to 1000 kPa
and subsequently cooled to −25 °C. In the third step, the biogas is
further cooled until −55 °C and liquefied CO2 is removed from the gas
mixture. Finally, the remaining gas stream is further cooled until
−85 °C where CO2 reaches a solid form and removed. The purified gas
is depressurised and can be used in various applications. This separa-
tion is regarded as new technology, which is still under development
[27,35] but some commercial plants are already in operation [35].
Cryogenic separation can be useful if the goal is to produce liquefied
biomethane (LBM) and liquid natural gas (LNG) [48]. It is advised to
pre-separate H2O and H2S to avoid plugging of equipment due to the
freezing of existed water in the raw biogas [23]. This phenomenon
significantly reduces the operating pressure of the system [99].

2.5. Separation of other trace components from biogas

The major components of biogas are CH4 and CO2, but it also con-
tains H2S and other sulphur compounds, halogenated compounds, si-
loxanes, water, ammonia, and other volatile organic compounds (VOCs)
in trace amounts [2]. The effects of various impurities in biogas are
summarised in Table 3. The moisture in biogas is not acceptable for all
applications and needs to be removed before utilisation because it
seriously damages the equipment by corrosion, thus the commercial
benefit of using biogas reduces. Drying biogas is conducted through
condensation and adsorption by silica gel, activated carbon, and alu-
minium oxide (Table 4). Preremoval of H2S is very crucial in all up-
grading technologies because H2S can cause corrosion in pipelines and

equipment. Different pretreatment processes are used to remove H2S as
shown in Table 4. The mentioned H2S removal processes are generally
effective where the sulphur concentration in biogas is high [105,106].
Siloxanes are the part of various industrial products such as shampoos,
paper coating, textile, and detergents [107]. Siloxanes are not decom-
posed in the activated sludge process and needs to be removed. The
most frequently used method for removing siloxanes is adsorption on
activated carbon [108–110]. Silica gel is also reported to be effectively
used for the removal of organic silicon compounds by adsorption
[28,108]. Other possible adsorbents are molecular sieves and polymer
pellets. An absorption process using non-volatile organic solvents has
also been reported [106]. With water scrubbing, water soluble halo-
genated compounds, sulphur compounds, and ammonia can also be
removed [2]. Membrane separation process is also reported in the lit-
erature which based on the principle of selective siloxane permeation
by solution and diffusion through dense polymeric membrane material
[108]. However, due to high investment cost and moderate operating
cost, this technology was no further pursued [76]. The possible reason
is that a large number of impurities in biogas has not been tested yet in
membrane separation process, therefore these contaminants can have
adverse effects on the separation performance and membrane stability
[85]. Generally, a precleaning of biogas is required prior to the in-
troduction of the biogas to the membrane process to protect the
membrane against harmful pollutants and subsequently prolong the
service life time of membrane separation system.

2.6. Life cycle assessment of biogas upgrading technologies

Life cycle assessment (LCA) is an operational tool commonly used to
evaluate the energy and environmental performance of a product or
system throughout its whole life cycle [111]. LCA takes into account all
environmental effects of a product, including exploration of the re-
sources, transport, manufacturing, emissions, and disposal [37,112].
The emission from the entire biogas production to energy conversion
measures the environmental impacts for any upgrading technology.
Furthermore, LCA concepts and techniques provide the base for the
evaluation of GHG emissions [113]. These evaluations mostly focused

Fig. 8. Process flow diagram of cryogenic separation.

Table 3
Biogas impurities and their effects [2,35].

Impurities Impact

H2O Corrosion in compressors, gas storage tanks and engines due to
reaction with H2S, NH3, and CO2 to form acids
Accumulation of water in pipes
Condensation or freezing due to high pressure

H2S SO2 and SO3 are formed due to combustion, which are more
toxic than H2S and cause corrosion with water

CO2 Reduction in calorific value
NH3 Corrosive when dissolves in water leads to an increase in

antiknock properties of engines; causes formation of NOx

O2/air Explosive mixtures due to high concentrations of O2 in biogas
Cl−1 Corrosion in combustion engines
F−1 Corrosion in combustion engines
Dust Clogging due to deposition in compressors and gas storage tanks
Hydrocarbons Corrosion in engines due to combustion
Siloxanes Formation of SiO2 and microcrystalline quartz due to

combustion; deposition at spark plugs, valves, and cylinder
heads abrading the surface

Table 4
H2S and H2O pretreatment and removal methods [35].

H2S pretreatment methods H2O removal methods

Air/O2 dosing to biogas reactor Condensation
Iron sponge Demister
Iron oxide Cyclone
Iron chloride dosing to digester slurry Moisture trap
Air stripping and recovery Adsorption dryer
Biological removal on a filter bed Silica
Membranes Aluminium
Adsorption on activated carbon Physical absorption with glycol
Physical and chemical absorption Absorption with hygroscopic salts
Zinc oxide sorbents
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on CH4 production and loss, the energy efficiency of various biogas
upgrading technologies, biogas utilisation, and by-products usage. The
key parameters of LCA are investigated for various biogas upgrading
technologies which are summarised in Table 5. LCA also suggests that
all the wastes from various industries should be minimised by con-
verting them into alternative renewable energy sources to provide a
clean environment and low GHG emissions [114]. For the GHG aspect,
the biogas production and biogas upgrading step have the highest im-
pact due to methane loss and high energy consumption. A large number
of technologies for biogas upgrading have been developed in order to
improve the overall efficiency to reduce the investment, operation and
maintenance costs [111,115]. Despite the increasing interest in these
technologies, there is a substantial lack of knowledge on the environ-
mental impacts connected to these upgrading technologies.

2.7. Innovative biological biogas upgrading

Biogas upgrading is vital for clean energy production. Although
various prevalent and commercial technologies are available for biogas
upgrading but significant challenges in terms of energy consumption
and operating costs still exist. In this context, an innovative alternative
solution for biogas upgrading is the biological method via hydro-
genotrophic methanogenesis which opens new avenues for a renewable
energy source [116]. In this process, CO2 and H2 are biologically con-
verted to CH4 by the action of autochthonous hydrogenotrophic me-
thanogens without any additional energy input according to Eq. (1).

+ → + = −°H CO CH H O G kJ mol4 2 Δ 130.7 /2 2 4 2 (1)

The concentration of CH4 in the product gas is> 98%, allowing its
exploitation as a substitute for natural gas [117,118]. The en-
vironmentally friendly production of H2 relies on water electrolysis
utilising the excess energy from the wind or solar power stations
[119,120]. Indeed, it has been reported that in EU countries, more than
26% of the electricity from wind is a temporary surplus which is used
for electrolysis of water [116]. The biological biogas upgrading process
can be classified into three categories, which are (1) in situ biogas
upgrade technology, in which H2 is transported inside the liquid phase
of a biogas reactor and then reacted with the CO2 contained in the
reactor resulting in CH4 production [121], (2) ex situ biogas upgrade
technology, in which CO2 comes from external sources (e.g., CO2 off-
gas, industrial waste gas, or syngas) and H2 are introduced into the
liquid phase of a reactor containing hydrogenotrophic cultures, re-
sulting in CH4 production [117], and (3) hybrid biogas upgrade tech-
nology, in which in situ and ex situ biogas upgrading are executed to-
gether for optimising the process [116].

2.7.1. Advantages and challenges of the biological biogas upgrading process
Biological biogas upgrading process has several advantages: (1) It

requires lower technical requirements compared to available technol-
ogies resulting in reduced operational and investment cost and energy
[122]. (2) It gives a high CH4 final volume [123]. (3) It does not involve
CH4 emissions to the atmosphere, resulting in enhanced life-cycle en-
vironmental benefits [124]. (4) It converts surplus electricity to CH4

which is easily transported and distributed across long distances for
various uses such as heating, CHP generation, and vehicular fuel [123].

However, practical challenges related to high pH and low gas-liquid
mass transfer rate of H2 bounds its availability for methanogens
[122–125]. The use of the hybrid technology addresses the problem of
pH enhancement during the in situ technology, while a considerably
smaller separate reactor is required for the ex situ technology [116].
Also, gas recirculation flow rate and reactor dimension are the main
factors for an effective biogas upgrading process [118]. This technology
could only be the best alternative of traditional biogas upgrading pro-
cess when electricity is surplus and H2 is cheaper. Therefore, these
limitations have to be addressed to introduce its commercial applica-
tion.

2.8. Economic assessment of biogas upgrading technologies

The technical availability, operating and maintenance costs asso-
ciated with various upgrading technologies for 1000 m3/h of raw
biogas are summarised in Table 6. The availability of membrane se-
paration, water scrubbing, and organic physical scrubbing is highest
due to their low maintenance costs. Maintenance cost is one of the key
factors for the selection of any upgrading technology as it increases the
operational cost of the process. It is worthwhile that the operating and
maintenance costs for different upgrading technologies are different
and can increase the capital cost [38,121,122].

The amount of energy required to upgrade raw biogas is another
important factor when selecting a technology. Table 7 summarises the
energetic performance of various upgrading technologies and concludes
that water scrubbing and organic physical scrubbing are cheaper and
consistent with a range of 0.20–0.43 kWh/Nm3 and 0.4–0.5 kWh/Nm3,
respectively. PSA is less consistent with a range of 0.24–0.60 kWh/Nm3.
The possible reason is that different adsorbents need numerous re-
generation energies that could make the process expensive and vari-
able. Similarly, amine scrubbing shows a wide variation in the energy
requirement due to high thermal energy to regenerate the amine ab-
sorbent. Different types of membrane materials and operating pressures
results in a high variation in energy needed to upgrade biogas.

The capital and operating costs of biogas upgrading technologies
largely depend on the selected process, quality of raw biogas, desired
product quality, and more importantly, the capacity of the plant [16].
The specific investment cost of various upgrading technologies sig-
nificantly depends on the plant capacities; the smaller the capacity

Table 5
Key parameters for LCA analysis [34,37,111,115]

Technology PSA HPWS OPS AS MS CS

Electric energy (MJ/m3), 0.72 0.97 – – 1.80 –
(kWh/Nm3) 0.24 0.20 – – 0.19 –
MJ/ton of CO2 removed 915 770 1069 433 1264 1275
Methane loss (%) 4 5.13 4 0.1 6 0.65
Upgrading yield (%) 65 68 – – 65 –
Methane purity (%) 97.5 98 97 99 91 98

Table 6
Technical availability and maintenance costs of biogas upgrading technologies [127].

Technology Technical availability per
year (%)

Maintenance cost
(€/year)

Cost
(€/m3)

PSA 94 56,000 0.26
HPWS 96 15,000 0.15
OPS 96 39,000 –
CSP 91 59,000 –
MS 98 25,000 0.22
CS – – 0.40

Table 7
Energy requirements of various biogas upgrading technologies.

Technology Energy requirement (kWh/m3 of upgraded biogas)

Collet
et al.
[128]

Patterson
et al. [127]

Götz
et al.
[129]

Ncibi
et al.
[130]

Olsson
et al.
[131]

Meier
et al.
[126]

PSA 0.5–0.6 0.24 0.335 0.285 – –
HPWS 0.3 0.2 0.43 0.391 – –
OPS 0.4 – 0.49 0.511 – –
CSP 0.15 0.12 0.646 0.126 – –
MS – 0.19 0.769 – 0.27 0.378
CS – – – – 0.42 –
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(0–100 Nm3/h), the higher the specific investment cost and vice versa
[30]. For a plant with low capacity, more or less the same number of
equipment, sensors, control valves, and pipes are required as for a plant
with much larger capacity. The dimensions of the pipes and valves will
be small, but the investment cost will be high. The capital investment
costs of various upgrading technologies are quite similar and decreasing
only with plant capacity as presented in Table 8.

2.9. Technology development and commercialisation

The biogas upgrading technologies which dominate today are
membrane separation, pressure swing adsorption, water scrubbing, and
amine scrubbing [30,132,133]. A few years ago, the membrane se-
paration was considered as an expensive and unestablished technology
but now it is rapidly gaining interest and market share due to the
availability of highly selective and low cost polymeric materials [27].
There are some major challenges for membrane technology such as
process stability for a long time and CH4 concentration and its de-
gradation by raw biogas components such as NH3 and H2S, thus re-
quiring a precleaning step to protect it which increases upgrading cost.
Multistage membrane process can remove acid gases and water vapours
from raw biogas and produces CH4 with high concentration (> 98%)
with low operational cost [30]. Moreover, only membrane units are
available at low throughput capacities for small scale biogas upgrading.
The increasing trend of membrane based biogas upgrading plants can

also be seen in Fig. 9. The production of biogas in Europe has increased
rapidly over the last decade. It is predicted that biogas production will
be increased from the current level of 16.9 Mtoe to 40.2 Mtoe in 2030
(Fig. 10). The market of biogas has grown from $124 billion in 2010 to
$217 billion in 2016 [133]. Thus, the global biogas plant market is
expected to reach $8.98 billion in 2017, contributed mainly by the
European countries. Among them, Germany has the higher biogas
production; UK, Sweden, Austria, Switzerland, and Italy are the other
major biogas markets in the continent (Table 9).

The recent market for matured biogas upgrading technologies
highly depends on its optimisation design with low operational cost
[10]. Although water scrubbing, amine scrubbing, and PSA have de-
veloped technologies since many years, a lot of research has been
conducted to improve their efficiency. For instance, water scrubber
process has been optimised to reduce the fresh water demand [132].
PSA has been developed to reduce the number of expensive pressure
valves and also the use of the high-performance low-cost absorbent
materials, and amine process has been developed with cost-effective
regeneration process for amine solution [133]. Cryogenic upgrading
technology is the best for liquefied biogas (LBG) production but it is still
not available for full-scale commercial operation. The use of several
devices and equipment in cryogenic separation makes it an expensive
option for the upgrading of biogas. Therefore, it makes a small market
share in biogas upgrading sector [134]. This technology may have a
breakthrough within a short period if the operational and economic
problems are properly fixed.

Table 8
Capital investment cost of different upgrading technologies.

Technology Cost

PSA 0.40 €/Nm3 of biogas [46]
Capital costs for 250, 500, 600, and 1000 m3/h are 5.5, 3.2, 2.4,
and 2.2 kUSD/(m3/h), respectively [16,39,128,129]

HPWS 0.13 €/Nm3 of biogas [46]
Capital costs for 250, 500, 660, and 1000 m3/h are 1.22, 2.7, 2.78,
and 2 kUSD/(m3/h), respectively [16,39,128,129]

OPS Capital costs for 250, 500, and 1000 m3/h are 4.8, 3.8, and 2.4
kUSD/(m3/h), respectively [16,39,128,129]

CSP 0.17 €/Nm3 of biogas [46]
Capital costs for 100, 250, 500, and 1000 m3/h are 10.5, 5.5, 3.6,
and 2.6 kUSD/(m3/h), respectively [16,39,128,129].

MS 0.12 €/Nm3 of biogas [46]
Capital costs for 100, 600, and 700–1400 m3/h are 6.6, 2.5, and 2.2
kUSD/(m3/h), respectively [16,39,128,129]

Fig. 9. The progress of biogas upgrading plants with increasing years
[38].
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3. Biogas utilisation and conversion to bio-compressed natural gas
(Bio-CNG)

As mentioned previously, biogas has other impurities except for CO2

that should be removed. The concentrations of those impurities depend
on the biogas source [7]. Hence, the biogas is preferred to be upgraded
before any utilisation. In fact, the levels of biogas impurities should be
controlled based on the requirements of each application as shown in
Table 10. Biogas can be used for different applications either as raw or
upgraded. The selection of upgrading technologies relies on various

factors, such as availability of resources, utilisation of biogas, and in-
vestment cost. The cheapest technology does not always mean the best
solution if it is not able to meet the requirements for utilisation [137].
Production and utilisation of biogas has numerous environmental ad-
vantages: (1) It is used as a renewable energy source. (2) It reduces the
CH4 emission to the environment. (3) It can be used as a substitute for
fossil fuels. (4) It reduces the emission of CO2 from combustion. (5) It
can be used in all natural gas appliances after upgrading. Biogas is
mainly utilised in five different applications: (1) H2 production from
biogas. (2) Electricity and power generation with combined heat and
power production (CHP). (3) Injection into the natural gas grids after
upgrading. (4) Production of heat and steam. (5) As a vehicular fuel in
upgraded and compressed form. Fig. 11 shows the different potential
applications of biogas after upgrading to the required level.

3.1. H2 production from biogas

Reforming of biogas on supported catalysts is an interesting method
to produce hydrogen. The use of biogas instead of CH4 for the pro-
duction of H2 is also a promising way to reduce CO2 emission
[138,139]. The presence of H2S is poisonous for nickel (Ni) catalyst so it
has to be removed prior to the reforming process. Currently, the biogas
derived H2 is used in the field of the hydrogen-base fuel cell which
efficiently converts the H2 to electricity at a commercial level. The main
drawback in the reforming process is the formation of carbon monoxide
(CO) as a gaseous by-product [140]. It acts as a poison to the fuel cell in
the 50 ppm range [141]. Therefore, the controlled steam reforming
(Eqs. (2) and (3)) followed by CO shift reactions (high-temperature, HT,
and low-temperature, LT) (Eq. (4)) are proved to be the feasible and
economical solution for CO reduction.

+ → + = +CH H O CO H H3 Δ 206.2 kJ/mol4 2 2 298 (2)

+ → + = +CH CO CO H H2 2 Δ 247.9 kJ/mol4 2 2 298 (3)

+ → + = −CO H O CO H HΔ 41 kJ/mol2 2 2 298 (4)

Also, there are various advantages of using biogas for the production of
H2: (1) It is a domestic and local energy resource. (2) It is a cheap feed

Table 9
Biogas plants, biogas upgrading plants, and their upgrading capacities in selected
European countries [135,136].

Country Biogas
plants

Biogas upgrading
plants

Upgrading capacity (Nm3/
h)

Germany 94 120 204,082
Austria 9066 10 5160
Italy 1264 1 540
Sweden 187 53 38,858
Netherlands 211 16 16,720
UK – – 18,957
Switzerland – – 6310

Table 10
Guidelines for impurities removal for specific biogas applications [23,39].

Applications H2S CO2 (% vol) H2O (% vol)

Gas Heating <250 ppm No removal required No removal required
(Boiler) (25–30) (6)
Kitchen Stove <10 ppm No removal required No removal required

(25–30) (6)
Stationary <1000 ppm No removal required Avoid condensation
Engine (CHP) (25–30) (< 3)
Vehicle Fuel Removal required Recommended Removal required

(5 mg/m3) (< 4) (< 3)
Natural Gas Removal required Removal required Removal required
Grid (2–15 mg/m3) (≤ 3) (1−8)

Fig. 11. Potential applications of biogas.
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which helps to decrease the end-use cost. (3) It is considered as an
environmentally friendly process.

3.2. Electricity production with combined heat and power production (CHP)

A significant percentage of the global electricity demand is expected
to be generated using biogas in the near future [142]. Biogas is an
economical fuel for the generation of electricity and heat [143]. In-
ternal combustion engines, gas turbines, micro-turbines, Stirling en-
gines, and fuel cells have been successfully generating electricity using
biogas [144,145]. Gas engines do not require high quality gas but it is
preferred to condense the water vapours in raw gas to avoid con-
densation in gas lines. The required level of H2S is below 250 ppm to
avoid corrosion of boiler and gas engine in combined heat and power
plants (CHPs) [17]. A low calorific value of biogas is one of the main
barriers for its utilisation in combined heat and power generation [23].

3.3. Biogas injection into natural gas grids

Biogas utilisation as a substitute of natural gas has gained significant
importance in recent years due to depletion and low quality of natural
gas resources. Purified biogas can be injected into the natural gas grids
[146]. Upgrading biogas as equal quality as natural gas by an efficient
appropriate method is very important for its injection into the existing
natural gas grids. Sweden, Germany, Switzerland, and France have set
their own standards for biogas injection into the natural gas grids to
avoid corrosion of equipment (Table 11). These standards could be
maintained using the existing biogas upgrading processes [27,147].

3.4. Biogas for the production of heat and steam

In most developing countries, biogas is used for cooking and
lighting [150]. Biogas is also used as fuel in the boiler for steam pro-
duction in different industrial applications. Burning biogas in a boiler is
one of the reliable technologies because low quality biogas can also be

Table 11
Biogas requirements for injection into natural gas grids [148,149].

Component Sweden France Switzerland Germany Netherlands Austria

CH4 (% vol) ≥97 ≥86 ≥96 ≥96 ≥85 ≥96
CO2 (% vol) ≤3 ≤2.5 ≤6 ≤6 ≤6 ≤3
O2 (% vol) ≤1 ≤0.01 ≤0.5 ≤0.5 ≤0.5 ≤0.5
H2 (% vol) ≤0.5 ≤6 ≤4 ≤5 ≤0.5 ≤4
CO (% vol) – ≤2 – – ≤1 –
H2S (mg/Nm3) ≤10 ≤5 ≤5 ≤5 ≤5 ≤5
Total sulphur (mg/Nm3) ≤23 ≤30 ≤30 ≤30 ≤16.5 ≤10
NH3 (mg/Nm3) ≤20 ≤3 ≤20 – ≤3 0
H2O (mg/Nm3) ≤3 – – – – –
Water dew point (°C) ≤−5 ≤−5, Pmax – Soil temp ≤−8, 70 bar ≤−8, 40 bar
Heavy metals (mg/Nm3) – ≤1 ≤5 ≤5 – –
Siloxanes (mg/Nm3) – – – – ≤5 ≤10
Halogens (mg/Nm3) – ≤1 (Cl) ≤10 (F) ≤1 0 ≤50/25 (Cl/F) 0
Mercaptans (mg/Nm3) – ≤6 ≤5 ≤15 ≤6 ≤6
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Fig. 12. Comparison of emissions for CNG and bio-CNG [154].

Table 12
Compositions of raw biogas, CNG, and bio-CNG [157].

Component CNG (volume%) Bio-CNG (volume%) Raw biogas (volume%)

CH4 89.14 93 65
CO2 4.38 4 33
H2 0.01 0.06 0.02
N2 0.11 2.94 1.98
C2H6 4.05 –
C3H8 0.83 –
Iso-C4H10 0.28 –
Neo-C4H10 0.66 –
Iso-C5H12 0.09 –
Neo-C5H12 0.28 –
C6H14 0.17 –
H2S – 20 ppm 500 ppm

Table 13
The gaseous emissions from heavy vehicles using different types of fuel [40]

Fuel CO
(g/km)

HC
(g/km)

NOx

(g/km)
CO2

(g/km)
Particulates
(g/km)

Calorific
value (kJ/kg)

Diesel 0.20 0.40 9.73 1053 0.100 44,800
Natural Gas 0.40 0.60 1.10 524 0.22 50,000
Biogas 0.08 0.35 5.44 223 0.5 35,000
Bio-CNG 0.02 0.12 0.48 100 0.1 52,000

Table 14
Biomethane production plants, gas, and biomethane filling stations in selected European
countries [135,136].

Country Biomethane plants Gas filling
stations

Biomethane filling
stations

Germany 178 203 308
Austria 14 904 3
Italy 5 903 –
Sweden 59 190 218
Netherlands 21 150 60
UK 37 80 –
Switzerland 24 137 130
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used with pressure around 8–25 mbar [16]. Normally, biogas can be
used in a boiler without upgrading, however, H2S level below
1000 ppm should be considered to avoid corrosion of boiler [23,151].

3.5. Biogas conversion to bio-CNG

After the removal of unwanted components from biogas to ≥ 97%
CH4, it can be converted into bio-compressed natural gas (bio-CNG) at
20–25 MPa (2900–3600 psi) [102,152]. Compression also reduces its
storage volume with high energy and pressure [153]. Although com-
pression at high pressure is very expensive, high heating value and
highly valuable product of bio-CNG justify this cost [48]. Compression
is a physical approach for the conversion of biogas to bio-CNG. Also, the
properties of bio-CNG are the same as that of CNG. However, the lo-
gistical investigation is also important with biogas upgrading and
compression techniques.

3.6. Bio-CNG as vehicular fuel

Global warming, energy crisis, and the increasing cost of fossil fuels
are the driving forces for the development of alternative vehicular fuels.
The compressed biomethane, also called as bio-CNG, has the same
properties as CNG in terms of engine performance, gas consumption,
and efficiency, when used as vehicular fuel [18,146]. The CO2 is one of
the GHGs emission and important parameters for any fuel in view of
global warming and climate changes. There is no significant difference

in CO2 emission level for both fuels, however, the emission levels of
NOx, HC, and CO for bio-CNG are slightly higher than CNG when used
as a vehicular fuel (Fig. 12) [127,154]. The temperature is low during
the warm up period of the vehicle engine. The decrease in temperature
reduces the oxidation rate of CO into CO2 resulting in high CO emission
[155]. Ethane and propane in CNG (Table 12) have lesser activation
energies than methane resulting in better combustion compared to bio-
CNG. Subsequently, bio-CNG gives slightly higher CO emission when
used as a vehicular fuel compared to CNG. The reason of high hydro-
carbon carbon (HC) emission is also due to the incomplete combustion
caused by poor oxidation at low temperature during the warm up
period. Bio-CNG contains a higher content of N2 compared to CNG
which favours the NOx formation during combustion. Furthermore,
there is no significant difference in fuel economy between biogas
(24.11 km/kg) and CNG (24.38 km/kg) [154]. Bio-CNG has a great
potential for becoming one of the most sustainable, economical, and
environmentally friendly vehicular fuels in the near future [156]. The
low density and high thermal efficiency of bio-CNG make it an eco-
nomic vehicular fuel and [40,158]. For heavy vehicles, the use of bio-
CNG is very advantageous because it has higher calorific value and
more environmentally friendly compared to any other fuels (Table 13).
There is a reduction of 63% in the emission of GHGs when bio-CNG is
used instead of CNG for heavy vehicles [102,134,159].

Also, it produces a less amount of dangerous and hazardous che-
micals such as CO2, sulphur, lead, and other heavy hydrocarbons into
the atmosphere [160,161]. Bio-CNG is widely used in Sweden, Italy,
Germany, Switzerland, France, Austria, Netherlands, and England as
vehicular fuel (Table 14). Sweden was a pioneer by using 73% of bio-
methane in CNG vehicles in 2015 [162]. Sweden aims to achieve fossil
fuel independent road transport system by 2030 and completely carbon
neutral transport system in all modes of transportation by 2050 [136].
Germany also has the vision to use 100% bio-CNG as a vehicular fuel
produced mainly using municipal waste by 2021 [154]. The fuel spe-
cifications of bio-CNG for various countries are summarised in
Table 15. These countries have their own quality standards for biogas as

Table 15
Bio-CNG fuel standards in various countries [38,154].

Specification France Sweden Netherlands Germany Austria Switzerland

CH4 (% vol) 96 > 97 – – 96 >96
CO2 (% vol) < 2.5 < 4 <6 <6 <3 <6
H2S (mgS/Nm3) < 5 <15 <5 <5 <5 <5
H2 (%vol) < 6 – <12 <5 <4 <4
Mercaptans (mgS/Nm3) < 6 – <10 <16 <6 <5
Total Sulphur (mgS/Nm3) < 30 <23 <45 <30 <10 <30
O2 (%vol) < 1 <1 <0.5 < 0.5 < 0.5 < 0.5
Water (H2O) dew point <−5 °C <−9 °C, 200 bar <−10 °C, 8 bar At ground

temperature
<−8 °C, 40 bar <−8 °C

Wobbe index (MJ/Nm3) 48.24–56.52 44.7–47.3 43.46–44.41 46.1–56.5 47.7–56.5 47.9–56.5
Calorific value (MJ/Nm3) 38.52–46.08 – 31.6–38.7 30.2–47.2 38.5–46 38.5–47.2

Table 16
Commonly used storage devices at various pressures [153].

Pressure Storage device Material

Low (0.138–0.414 bar) Water sealed gas holder Steel
Low Gas bag Rubber, plastic, vinyl
Medium (1.05–1.97 bar) Propane or butane tanks Steel
High (200 bar) Commercial gas cylinders Alloy

Fig. 13. Process flow diagram of a typical bio-CNG filling station.
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a vehicular fuel. Although, the most important biogas quality indicators
for vehicular fuel are the concentrations of CH4 and CO2, which should
be ≥ 96% and<2.5%, respectively [18,147,156]. These requirements
for bio-CNG could also be taken as a quality standard for other devel-
oping countries such as Pakistan, India Malaysia, and Indonesia.

4. Storage of bio-CNG

Storage of bio-CNG or regular CNG is an important stage because it
affects cylinder filling efficiency, filling time, charged mass, safety, and
maintenance cost of the compressor [43]. Like CNG, bio-CNG can be

stored in steel airtight tanks for future usage [32,163]. Most commonly
used storage devices are given in Table 16.

Fig. 13 shows a typical bio-CNG filling station. Bio-CNG from the
distribution pipeline, usually with a low or medium pressures of less
than 0.4 or 1.6 MPa, respectively, is compressed using large multistage
compressors. Generally, a storage system consists of several high pres-
sure large cylinders, so that the bio-CNG flows to the vehicle under
differential pressures. Typically, the storage system operates at a pres-
sure of 20.5–25 MPa, while the vehicle’s maximum on-board cylinder
pressure is 20 MPa [16,164]. At the bio-CNG filling station, the gas is
stored in the storage system for more efficient and economical

Fig. 14. Bio-CNG production, storage, and distribution.

Fig. 15. Buffer storage system for bio-CNG [43].

Fig. 16. Cascade storage system for bio-CNG
[43].
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distribution. There are two common systems for storing bio-CNG at
filling stations, namely buffer and cascade storage systems. Fig. 14
shows the approaches to produce bio-CNG, its storage, and distribution.

4.1. Buffer storage system

In buffer storage system, the pressure of bio-CNG is maintained at
3000–3600 psi (20.7–24.8 MPa, 207–248 bar) and provides a max-
imum gas pressure of 2900 psi (20 MPa, 200 bar) to the vehicle's cy-
linders at 300 K. In this storage system, all filling station reservoir cy-
linders are connected and maintained at the same pressure during all
time [152]. Fig. 15 shows typical buffer storage process of bio-CNG.

4.2. Cascade storage system

In cascade storage, three reservoirs at different pressures (low, medium,
and high) are used to fill the cylinders with bio-CNG. Each of these re-
servoirs contains several large cylinders which are used into an order of
ascending pressure. Fig. 16 shows the typical cascade storage system using
three reservoirs. During the gas filling, initially, the low pressure reservoir is
connected to the cylinder. When the pre-set level is attained, it auto-
matically switches to the reservoir of medium pressure and finally, high
pressure reservoir is connected to ensure the maximum amount of gas.

In cascade storage system, bio-CNG filling from three reservoirs at
different pressures takes more time compared to buffer storage system.
Therefore, the cascade storage system is chosen for filling big vehicles
that normally takes a longer filling time, while the buffer storage
system is preferred for small family cars with fast cylinder filling
[16,43,152,164].

Farzaneh-Gord et al. [43] studied the effect of storage type on the
performance of gas filling stations and gave a theoretical analysis of var-
ious important parameters. Fig. 17 shows a dimensionless comparison
between important parameters for these storage systems. The dimension-
less parameters have been calculated by dividing the parameters to a
higher value in each case. They identified that the filling time required to
fill the vehicle cylinder to its final pressure in the buffer storage system
was about 66% less than the cascade storage system. Also, the charged
mass for buffer storage system was about 20% higher than the cascade
storage system which gives an advantage to buffer system over cascade
one. The biggest advantage of the cascade storage system over the buffer
system is 50% less entropy generation for this configuration, leading to a
lower compressor input work compared to buffer system. Temperature has
a great effect on charged mass, where high temperature decreases the
amount of charged mass in the cylinder. The cascade storage system has a
higher final temperature that results in less charged mass compared to the
buffer storage system.

5. Conclusions and future direction

Cost minimisation is not the only criterion for selecting biogas up-
grading technology. It is also essential that the specific technology can
satisfy the specific requirement. Therefore, it is attempted to provide
critical considerations on available biogas upgrading technologies,
various utilisation of biogas, conversion to bio-CNG, and its storage for
further use. Although biogas production is a commercially developed
technology, its worldwide utilisation is still limited due to stringent
purification requirements before its usage. This review found that a lot
of researches are still needed to reduce the CH4 loss, environmental
impacts, maintenance cost, and energy consumption. The developed
biogas upgrading technologies are water scrubbing, pressure swing
adsorption, and amine scrubbing, but membrane technology has altered
the situation due to high market demand. Membrane technology can
replace all traditional separation processes in the future due to its
economic and environmental aspects. However, the future membrane
material developments should focus on the enhanced compatibility
with the high variety of biogas components rather than on the
achievement of very high selectivity. Also, the use of membrane tech-
nology in other steps of biogas upgrading like desulphurisation, drying,
or VOC removal is still rather rare. Some novel technologies such as
cryogenic separation and ex situ biological upgrading methods re-
present the recent developments in biogas upgrading technologies.
However, they are still under development and not available on a
commercial scale. Therefore, more efforts are needed to channel the
knowledge gap between such new methods and large scale operations.
Biogas can be used as a substitute for natural gas in all applications but
it is difficult to find the gas requirements for some specific applications.

Furthermore, biogas can be converted into bio-CNG as a vehicular
fuel as an alternative to regular CNG. Bio-CNG would play a vital role to
minimise environmental pollution contributed by other carbon-based
fossil fuels. It is found that biogas production is increasing in Europe
and around the globe, and subsequently increases its utilisation as a
vehicular fuel in compressed form. Furthermore, CO2 emission level for
both fuels is almost the same. CO2 emissions for the bio-CNG and reg-
ular CNG are 113.72 and 113.98 g/km, respectively. Safety precaution
for bio-CNG storage is also an important aspect that requires attention.
Generally, two common methods are used for storing bio-CNG, namely
buffer and cascade storage systems. The performance of storage systems
could be improved by balancing various parameters such as charged
mass, filling time, and compressor input work. It is identified that the
performance of bio-CNG filling station is improved by reducing the
filling time and compressor input work and increasing the charge mass
into the vehicle's cylinders. In addition, more researches and develop-
ments are required to construct such a storage system that combine the
advantages of buffer and cascade storage systems. This provides an
opportunity for future developments and improvements of the storage
systems.
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