

Available online at www.sciencedirect.com

Electronic Notes in **DISCRETE MATHEMATICS**

[Electronic Notes in Discrete Mathematics 46 \(2014\) 89–96](http://dx.doi.org/10.1016/j.endm.2014.08.013)

www.elsevier.com/locate/endm

An Approximate Algorithm for the Chromatic Number of Graphs

Guillermo de Ita Luna ¹,²

Facultad de Ciencias de la Computación, BUAP, Puebla, México

J. Raymundo Marcial-Romero ³

Facultad de Ingeniería, UAEMex, Toluca, México

Yolanda Moyao ⁴

Facultad de Ciencias de la Computación, BUAP, Puebla, México

Abstract

We have designed a novel polynomial-time approximate algorithm for the graph vertex colouring problem. Contrary to the common top-down strategy for solving the colouring graph problem, we propose a bottom-up algorithm for colouring graphs. Given an input graph G , we establish an upper bound to approximate the colouring of the input grap given by $\lceil \delta(G)/2 \rceil + 2$ where $\delta(G)$ is the average degree of G.

Keywords: Graph Coloring, Approximate Algorithm, Chromatic Number.

¹ Work supported by SNI-Conacyt-México $\frac{2}{\pi}$ Email:deita@cs.buap.mx

³ Email:jrmarcialr@uaemex.mx

 4 Email: ymovao @cs.buap.mx

1 Introduction

Graph vertex colouring problem is an active field of research, with many interesting subproblems $\left[4,5,6\right]$ $\left[4,5,6\right]$ $\left[4,5,6\right]$ $\left[4,5,6\right]$ and applications in areas like scheduling, frequency allocation, planning, etc [\[2\]](#page-7-3).

The graph colouring problem consists in colouring properly the vertices of a graph with the smallest possible number of colours, so that no two adjacent vertices receive the same colour. If a colouring with k colours exists, then the graph is said to be k -colourable. The chromatic number of a graph G , denoted as $\chi(G)$, represents the minimum number of colours for proper colouring G.

The chromatic number $\chi(G)$ is polynomial computable when $\chi(G) \leq 2$, but when $\chi(G) \geq 3$ the problem becomes NP-complete, even for graphs G with degree $\Delta(G) \geq 3$. As a consequence, there are many unanswered questions related to the colouring of a graph [\[5\]](#page-7-1).

Following the line of exact algorithms and using maximal independent sets to compute the chromatic number, Beigel et. al. [\[1\]](#page-7-4) established an $O(2.4151ⁿ)$ time algorithm . Subsequently, Byskov [\[2\]](#page-7-3) provided an $O(2.4023^n)$ time algorithm. Both algorithms have a top-down strategy using a combination of improved upper bounds on the number of maximal independent sets (MIS) of size at most k , in a dynamic programming approach.

We have designed a novel bottom-up heuristic for colouring graphs. Given an input graph G , first we remove even cycles and acyclic subgraphs since they can be 2-colourable. Taken the resulting graph, said G_1 , the procedure iterates building in each iteration a MIS K_i and discarding it from G_i , forming so a subgraph $G_{i+1} = (G_i - K_i)$. The procedure iterates until a polynomial-time 2-colourable subgraph is reached.

The knowledge of lower bounds for the independence number of the graph $(\alpha(G))$ has been a relevant measure to determine combinatorial properties of a graph. In this paper, we show that $\alpha(G)$ is not the unique useful measure for computing $\chi(G)$. If G is a connected graph and K is a MIS of G, we establish the first lower bound on the maximum number of edges incident to the nodes of K, and we show how that lower bound establishes a new upper bound.

We build a MIS K_i for each subgraph G_i satisfying that the number of edges of G_i incident to nodes of K_i , is at least the number of current nodes minus 1, i.e. $|E_{G_i}(K_i)| \leq |V(G_i)|-1$. That lower bound for $|E_{G_i}(K_i)|$ allows us to design an iterative procedure such that, if each remained subgraph G_{i+1} = $(G_i - K_i)$ is connected, then our procedure establishes an average number of $\lceil \delta(G)/2 \rceil$ +2 colours as the chromatic number of G, where $\delta(G)$ is the average degree of G.

2 Preliminaries

Let $G = (V, E)$ be an undirected simple graph (i.e. finite, loop-less and without multiple edges) with vertex set V and set of edges E. $E(G)$ and $V(G)$ emphasize that these are the edges and vertex sets of a particular graph G. Two vertices v and w are called *adjacent* if there is an edge $\{v, w\} \in E$, joining them. The *neighbourhood* of $x \in V$ is $N(x) = \{y \in V : \{x, y\} \in E\}$ and its closed neighbourhood is $N(x) \cup \{x\}$ which is denoted by $N[x]$.

We denote the cardinality of a set A, by |A|. Given a graph $G = (V, E)$, the degree of a vertex $x \in V$, denoted by $\delta(x)$, is $|N(x)|$. If A is a set of vertices from a graph $G, N(A)$ is the set of neighbour vertices from any vertex of A, that is, $N(A) = \bigcup_{x \in A} N(x)$, while $N[A] = N(A) \cup A$.

The maximum degree of G or just the degree of G is $\Delta(G) = max\{\delta(x) :$ $x \in V$, while we denote with $\delta_{min}(G) = min{\delta(x) : x \in V}$ and with $\delta(G) = (2 \cdot |E|)/|V|$ the average degree of the graph.

Given a subset of vertices $S \subseteq V(G)$ the subgraph of G denoted by $G|S$ has vertex set S and a set of edges $E(G|S) = \{ \{u, v\} \in E : u, v \in S \}$. G|S is called the *subgraph of G induced by S.* We write $G - S$ to denote the graph $G|(V-S)$. The subgraph induced by $N(v)$ is denoted as $H(v) = G|N(v)$ which has to $N(v)$ as the set of nodes and all edges upon them.

Given a subgraph $H \subseteq G$ and for a vertex $x \in V(H)$, let $E_H(x) =$ $\{\{x, u\} \in E(G) : u \in H\}$, and let $\delta_H(x)$ be the cardinality of $E_H(x)$, if $H = G$ then $\delta_G(x) = \delta(x)$. $N_H(x)$ denotes the set of nodes from H adjacent to x. For any subgraph $H \subseteq G$, $\delta_G(H) = \sum_{x \in H} \delta_G(x)$. If H is an independent set of G then $\delta_G(H)$ is the number of edges of G incident to any node of H.

A path from a vertex v to a vertex w in a graph is a sequence of edges: $v_0v_1, v_1v_2, \ldots, v_{n-1}v_n$ such that $v = v_0, v_n = w$, v_k is adjacent to v_{k+1} and the length of the path is n. A simple path is a path such that $v_0, v_1, \ldots, v_{n-1}, v_n$ are all distinct. A cycle is just a nonempty path such that the first and last vertices are identical, and a simple cycle is a cycle in which no vertex is repeated, except the first and last vertices.

A k-cycle is a cycle of length k, that is, a k-cycle has k edges. A cycle of odd length is called an odd cycle, while a cycle of even length is called an even cycle. A graph G is acyclic if it has not cycles.

A connected component of G is a maximal induced subgraph of G , that is, a connected subgraph which is not a proper subgraph of any other connected subgraph of G. Note that, in a connected component, for every pair of its vertices x, y , there is a path from x to y . If an acyclic graph is also connected, then it is called a free tree. Let G be a connected graph, a node $v \in V(G)$ is called a no articulation point if $G\backslash v$ is a connected graph. A subset $S \subset V(G)$ is called a no articulation set if $G \setminus S$ is a connected graph.

A colouring of a graph $G = (V, E)$ is an assignment of colours to its vertices. A colouring is proper if adjacent vertices always have different colours. A kcolouring of G is a mapping from V into the set $\{1, 2, \ldots, k\}$ of k "colours". The chromatic number of G denoted by $\chi(G)$ is the minimum value k such that G has a proper k-colouring. If $\chi(G) = k$, G is then said to be k-chromatic. The value $\chi(G)$ is polynomial computable when $\chi(G) \leq 2$, but when $\chi(G) \geq 3$, the problem becomes NP-complete, even for graphs G with degree $\Delta(G) \geq 3$.

Given a graph $G = (V, E), S \subseteq V$ is an independent set in G if for whatever two vertices v_1, v_2 in S, $\{v_1, v_2\} \notin E$. Let $I(G)$ be the set of all independent sets of G. An independent set $S \in I(G)$ is maximal, abbreviated as MIS, if it is not a subset of any larger independent set and, it is maximum if it has the largest size among all independent sets in $I(G)$. The *independence number* $\alpha(G)$ is the cardinality of the maximum independent set of G.

Let $G = (V, E)$ be a graph, G is a *bipartite graph* if V can be partitioned into two subsets U_1 and U_2 , called *partite sets*, such that every edge of G joins a vertex of U_1 and a vertex of U_2 . If G is a k-chromatic graph, then it is possible to partition V into k independent sets $V_1, V_2, ..., V_k$, called *colour* classes, but it is not possible to partition V into $k-1$ independent sets.

3 An Approximate Algorithm for $\chi(G)$

Given an input connected graph $G = (V, E)$, let $n = |V|$, $m = |E|$ be the number of nodes and edges, respectively. A depth-first search (dfs) on G is applied starting the search with the node $v \in V$ of minimum degree, and selecting among different potential nodes to visit the node with minimum degree first and with minimum value in its label as a second criterion.

While the $dfs(G)$ is computed, a set I_B , which consists of nodes not part of odd cycle from G, can be computed in polynomial time on the size $(n+m)$ of G. We show that I_B is a bipartite subgraph of G, and then I_B can be coloured at the end of the colouring process by the two last colours used for the last bipartite subgraph from G (subprocedure 2-colouring).

If $\delta(G) = (2m/n) \leq 2$ then G has not intersected cycles and it can be coloured in linear time on the number of nodes. Otherwise, if $\delta(G)$ is close to n, e.g. $\delta(G) \geq n-4$, the complement graph of G, denoted as G, shows the different colour classes of G.

Let G_0 be the initial graph which satisfies $2 < \delta(G_0) < n-3$ and each node of G_0 is part of of odd basic cycles. Let $G_{i+1} = (G_i - K_i)$ be the remaining subgraph after the *i*-iteration of our procedure. Let us denote as δ_i to $\delta(G_i)$ the average degree of G_i , $n_i = |V(G_i)|$ and $m_i = |E(G_i)|$. In each iteration, the procedure builds a MIS K_{i+1} in the remaining subgraph G_{i+1} .

We show that our procedure builds a MIS K_i of G_i satisfying that if G_i is a connected graph, then K_i is a maximal independent set of G_i such that $\sum_{x \in K_i} \delta(x) \ge |V(G_i)| - 1.$

Theorem 1 Let G be a connected graph, there exists a maximal independent set K of G such that $\sum_{x \in K} \delta(x) \geq |V(G)| - 1$

Proof. The proof proceeds by induction on the number of nodes n of the graph. \Box

Thus, let G be a connected graph such that $|E(G)| \geq |V(G)| + 1$. The Algorithm [1,](#page-4-0) called $Build_MIS(G)$, builds a MIS which satisfies Theorem [1.](#page-4-1)

Algorithm 1 BUILD $MIS(G)$ Require: G a non directed graph **Ensure:** K_0 is a MIS such that $\delta_G(K_0) \geq |V(G)| - 1$ while $|E(G_i)| > |V(G_i)|$ do {Contraction process} choose a no articulation node $x \in G_i$ push x to a stack V and remove x from G_i $G_{i+1} = G_i - \{x\}$ end while Builds K_0 a MIS such that $\delta(K_0) \geq |V(G_{i+1})| - 1$ repeat {Extending the MIS K_0 } pop x from stack V if $N_{G_{i-1}}(x) \cap K_0 = \emptyset$ then $K_0 = K_0 \cup \{x\}$ end if until stack is empty Returns K_0 {At this point $\delta_G(K_0) \geq |V(G)| - 1$ }

We describe the general strategy of our proposal for colouring G , called $See k_C chromatic_Number(G)$ (Algorithm [2\)](#page-5-0).

Firstly, in each main iteration of the loop in Algorithm [2,](#page-5-0) G_i is tested to be polynomial-time 2-colourable and in this case, the procedure finishes and a polynomial-time 2-colouring procedure is executed.

Secondly, a MIS K_i such that $\delta_{G_i}(K_i) \geq |V(G_i)| - 1$ is formed.

Thirdly, we colour the nodes in K_i with the current colour, and let G_{i+1} = $G_i - \{K_i\}$, and the process is repeated with G_{i+1} .

Algorithm 2 Seek_Chromatic_Number (G)

Require: G a non directed graph **Ensure:** An approximate value for $\chi(G)$ $k = 3$; G=dfs(G) $I_B = \{u \in V(G) : u$ is not part of any odd cycle of G $G=G-I_B$ if G is Polynomial 3Colourable then Returns $\chi(G)$ is 3 end if while is bipartite (G) = false do {While there are odd cycles in G } $T = Build_MIS(G)$ $G = G - T$ $k = k + 1$ {Updating for the next MIS} end while $G = G \cup I_B$ {returns the first bipartite component } Call 2-colouring (G) {At the end, the remaining graph is 2-colourable } Returns $\chi(G)$ is $k+2$

4 Complexity Analysis

Given a connected initial graph G, let $G_0 = (G - I_B)$ be the input graph without its intial bipartite component (I_B) , $G_0 = (V, E)$ with $n = |V|$ and $m = |E|$. Let us assume that $m = t \cdot n, t > 1$, and that G_0 has intersected odd cycles, hence $m > n$.

Let T_i be the MIS formed in the iteration i of the loop of algorithm [2.](#page-5-0) Let $G_{i+1} = G_i - T_i$, $n_{i+1} = |V_{i+1}|$, $m_{i+1} = |E_{i+1}|$ and let $\delta_i = \frac{2m_i}{n_i}$ be the average degree of each subgraph G_i . In each iteration, the number of nodes and edges are updated as: $n_{i+1} = n_i - |T_i|$ and $m_{i+1} = m_i - |E_{G_i}(T_i)|$, since in each iteration the nodes in T_i are deleted as well as its incident edges: $E_{G_i}(T_i)$.

In each iteration algorithm [1](#page-4-0) builds a MIS T_i of the current graph G_i such that $\sum_{x \in T_i} \delta_{G_i}(x) \ge (n_i - 1)$ under the assumptions that G_i is connected and $m_i \geq n_i$.

In the first iteration it holds: $\sum_{x \in T_1} \delta_G(x) \geq (n-1)$. In the second iteration $\sum_{x \in T_2} \delta_{G-T_1}(x) \ge n_1 - 1$ which is equivalent to $\sum_{x \in T_2} \delta_G(x) - |T_1| \ge$ $(n - |T_1|) - 1$ since each node in T_2 was originally adjacent to some node in T_1 , T_1 is the first MIS of G and $n_1 = n - |T_1|$. Thus $\sum_{x \in T_2} \delta_G(x) \geq n - 1$.

The same analysis holds for the third iterations $\sum_{x \in T_3} \delta_{G-(T_1 \cup T_2)}(x) \geq$ $n_2 - 1$ which is equivalent to $\sum_{x \in T_3} \delta_G(x) - (|T_1| + |T_2|) \ge (n - |T_1| - |T_2|) - 1$, since each node in T_3 was originally adjacent to some node in T_1 and some node in T_2 , $n_2 = n - |T_1| - |T_2|$. Thus, $\sum_{x \in T_3} \delta_G(x) \ge n - 1$.

The main cycle in algorithm [2](#page-5-0) ends when the graph G_k is a bipartite graphs (2-coloring graphs). Thus, in the iteration k, it holds $\sum_{x \in T_k} \delta_G(x) \geq n - 1$. So,

$$
\sum_{x \in \bigcup_{i=1}^k T_i} \delta_G(x) = \sum_{x \in V} \delta_G(x) = 2m \ge k \cdot (n-1)
$$

since T_i , $i = 1, \ldots, k$ is a partition of V and the sum of the degree of the nodes of a connected graph is the double of the number of edges.

The last inequality establishes an order of $k < (2m)/(n-1)$ iterations for the while in algorithm [2.](#page-5-0) Then, $[(2m)/(n-1)]+1$ colours are enough (because of the two colours used in the last iteration) to colour the initial graph G , that is $\delta(1 + [1/(n-1)]) + 1$, or $\left[\delta \cdot \frac{n}{n-1}\right] + 1$ colours, $\delta = 2m/n$ being the average degree of the initial graph G_0 .

Thus, if each G_{i+1} generated by our heuristic is connected, then $\lceil \delta(G_0) \rceil + 2$ colours are enough for colouring the input graph G, where $\delta(G_0)$ is the average degree of the input graph G without its first bipartite component.

Notice that the main purpose to consider $G_0 = (G - I_B)$ for starting the iterative procedure Seek Chromatic Number is to reduce the possibilities that G_i will be a disconnected subgraph, $i = 1, \ldots, k$. But, if during an iteration of our procedure G_i is disconnected, then $\chi(G_i) = max{\chi(H_1), \ldots, \chi(H_t)}$, where H_i, \ldots, H_t are the different connected components from G_i and the number of colours for colouring G could not be upper bounded by $\lceil \delta(G_0) \rceil + 2$.

One of the most expensive time task included in $Build_MIS$ is to recognize articulation points (or cut vertices) on the current subgraph, this task is done in time $O(m + n)$, and assuming $m > n$ (which are the cases when Build MIS is executed) the total time for recognizing articulation points is $O(m) = O(2m)$.

The number of iterations of the step 1 of *Build MIS* (which coincides with the number of iterations in the step 3) is at most $\lceil n/3 \rceil$ because at most $\lceil n/3 \rceil$ nodes can be removed from the original graph in order to form an acyclic graph. And to determine the articulation points in the step 1 is of order $O(m)$. And the second step (to build the initial MIS) requires at most time $O(n)$. Then, Build MIS has a time complexity in the worst case of $O(n^2) = \lceil n/3 \rceil \cdot n$.

The most expensive step, with respect to the time complexity, of algo-rithm [2](#page-5-0) is the "while" whose body has a time complexity of $O(n^2)$ because it consists of performing *Build_MIS*. The number of iterations in algorithm [2](#page-5-0)

is proportional to $\delta(G) \cdot \frac{n}{n-1}$, then in the worst case the total time of our procedure will be $n^2 \cdot \frac{2m}{n} \cdot \frac{n}{n-1} = 2\frac{n^2 \cdot m}{n-1} \approx 2 \cdot m \cdot n$. Thus, an upper bound for the time complexity of our procedure is $O(m \cdot n)$, which is a polynomial value on the size of the input graph G .

5 Conclusions

We have presented a novel polynomial-time algorithm for determining the chromatic number of a graph $\chi(G)$. Given an input connected graph G, our heuristic discards a first bipartite component of G , denoted by I_B , formed by the nodes which are no part of odd cycle in G since those nodes can be coloured at the end of the process with the first two basic colours. Let $G_0 = G - I_B$ be the remaining subgraph. Our proposal is based on selecting, in an iterative manner, a MIS K_i from the current subgraph G_i such that $\delta_{G_i}(K_i) \geq |V(G_i)| - 1$. That lower bound on the number of edges in the current graph G_i , with an endpoint in any node of K_i , allow us to design an iterative procedure such that if each remained subgraph $G_{i+1} = (G_i - K_i)$ is connected, then we obtain an upper bound to colour a graph; given that $\lceil \delta(G_0) \rceil$ + 2 colours are enough to colour the input graph G, where $\delta(G_0)$ is the average degree of the initial subgraph without its first bipartite component.

On the other hand, if any G_i is disconnected then $\chi(G_i) = max\{\chi(H_1), \ldots, \chi(H_n)\}$ $\chi(H_t)$ where H_i, \ldots, H_t are the different connected components from G_i .

References

- [1] Beigel R., and D. Eppstein, 3-colouring in time $O(1.3289^n)$, Journal of Algorithms 54 (2) (2005) 168–204.
- [2] Byskov J.M., "Exact Algorithms for graph colouring and exact satisifiability". Phd thesis, University of Aarbus, Denmark, 2005.
- [3] De Ita Guillermo, and Javier A. Castillo Recognizing 3-colorings cycle-patterns on graphs, Pattern Recognition Letters 34 (4) (2013), 433–438.
- [4] Golumbic M.C., "Algorithmic Graph Theory and Perfect Graphs". 2nd edn. North Holland, 2004.
- [5] Kocay William, and Donald L. Kreher, " Graphs, Algorithms, and Optimization". Chapman & Hall/CRC, 2005.
- [6] Wilson R. A., "Graphs, Colourings and the Four-colour Theorem". Oxford University Press, 2002.