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Abstract

We have designed a novel polynomial-time approximate algorithm for the graph ver-
tex colouring problem. Contrary to the common top-down strategy for solving the
colouring graph problem, we propose a bottom-up algorithm for colouring graphs.
Given an input graph G, we establish an upper bound to approximate the colouring
of the input grap given by ⌈δ(G)/2⌉ +2 where δ(G) is the average degree of G.
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1 Introduction

Graph vertex colouring problem is an active field of research, with many inter-
esting subproblems [4,5,6] and applications in areas like scheduling, frequency
allocation, planning, etc [2].

The graph colouring problem consists in colouring properly the vertices of
a graph with the smallest possible number of colours, so that no two adjacent
vertices receive the same colour. If a colouring with k colours exists, then the
graph is said to be k-colourable. The chromatic number of a graph G, denoted
as χ(G), represents the minimum number of colours for proper colouring G.

The chromatic number χ(G) is polynomial computable when χ(G) ≤ 2,
but when χ(G) ≥ 3 the problem becomes NP-complete, even for graphsG with
degree ∆(G) ≥ 3. As a consequence, there are many unanswered questions
related to the colouring of a graph [5].

Following the line of exact algorithms and using maximal independent sets
to compute the chromatic number, Beigel et. al. [1] established an O(2.4151n)
time algorithm . Subsequently, Byskov [2] provided an O(2.4023n) time al-
gorithm. Both algorithms have a top-down strategy using a combination of
improved upper bounds on the number of maximal independent sets (MIS) of
size at most k, in a dynamic programming approach.

We have designed a novel bottom-up heuristic for colouring graphs. Given
an input graph G, first we remove even cycles and acyclic subgraphs since they
can be 2-colourable. Taken the resulting graph, said G1, the procedure iterates
building in each iteration a MIS Ki and discarding it from Gi, forming so a
subgraph Gi+1 = (Gi −Ki). The procedure iterates until a polynomial-time
2-colourable subgraph is reached.

The knowledge of lower bounds for the independence number of the graph
(α(G)) has been a relevant measure to determine combinatorial properties of
a graph. In this paper, we show that α(G) is not the unique useful measure for
computing χ(G). If G is a connected graph and K is a MIS of G, we establish
the first lower bound on the maximum number of edges incident to the nodes
of K, and we show how that lower bound establishes a new upper bound.

We build a MIS Ki for each subgraph Gi satisfying that the number of
edges of Gi incident to nodes of Ki, is at least the number of current nodes
minus 1, i.e. |EGi

(Ki)| ≤ |V (Gi)|−1. That lower bound for |EGi
(Ki)| allows us

to design an iterative procedure such that, if each remained subgraph Gi+1 =
(Gi −Ki) is connected, then our procedure establishes an average number of
⌈δ(G)/2⌉ +2 colours as the chromatic number of G, where δ(G) is the average
degree of G.
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2 Preliminaries

Let G = (V,E) be an undirected simple graph (i.e. finite, loop-less and
without multiple edges) with vertex set V and set of edges E. E(G) and
V (G) emphasize that these are the edges and vertex sets of a particular graph
G. Two vertices v and w are called adjacent if there is an edge {v, w} ∈ E,
joining them. The neighbourhood of x ∈ V is N(x) = {y ∈ V : {x, y} ∈ E}
and its closed neighbourhood is N(x) ∪ {x} which is denoted by N [x].

We denote the cardinality of a set A, by |A|. Given a graph G = (V,E),
the degree of a vertex x ∈ V , denoted by δ(x), is |N(x)|. If A is a set of
vertices from a graph G, N(A) is the set of neighbour vertices from any vertex
of A, that is, N(A) = ∪x∈AN(x), while N [A] = N(A) ∪A.

The maximum degree of G or just the degree of G is ∆(G) = max{δ(x) :
x ∈ V }, while we denote with δmin(G) = min{δ(x) : x ∈ V } and with
δ(G) = (2 · |E|)/|V | the average degree of the graph.

Given a subset of vertices S ⊆ V (G) the subgraph of G denoted by G|S
has vertex set S and a set of edges E(G|S) = {{u, v} ∈ E : u, v ∈ S}. G|S is
called the subgraph of G induced by S. We write G − S to denote the graph
G|(V − S). The subgraph induced by N(v) is denoted as H(v) = G|N(v)
which has to N(v) as the set of nodes and all edges upon them.

Given a subgraph H ⊆ G and for a vertex x ∈ V (H), let EH(x) =
{{x, u} ∈ E(G) : u ∈ H}, and let δH(x) be the cardinality of EH(x), if
H = G then δG(x) = δ(x). NH(x) denotes the set of nodes from H adjacent
to x. For any subgraph H ⊆ G, δG(H) =

∑

x∈H
δG(x). If H is an independent

set of G then δG(H) is the number of edges of G incident to any node of H .

A path from a vertex v to a vertex w in a graph is a sequence of edges:
v0v1, v1v2, . . . , vn−1vn such that v = v0, vn = w, vk is adjacent to vk+1 and the
length of the path is n. A simple path is a path such that v0, v1, . . . , vn−1, vn
are all distinct. A cycle is just a nonempty path such that the first and
last vertices are identical, and a simple cycle is a cycle in which no vertex is
repeated, except the first and last vertices.

A k-cycle is a cycle of length k, that is, a k-cycle has k edges. A cycle of
odd length is called an odd cycle, while a cycle of even length is called an even
cycle. A graph G is acyclic if it has not cycles.

A connected component of G is a maximal induced subgraph of G, that is,
a connected subgraph which is not a proper subgraph of any other connected
subgraph of G. Note that, in a connected component, for every pair of its
vertices x, y, there is a path from x to y. If an acyclic graph is also connected,
then it is called a free tree. Let G be a connected graph, a node v ∈ V (G) is
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called a no articulation point if G\v is a connected graph. A subset S ⊂ V (G)
is called a no articulation set if G \ S is a connected graph.

A colouring of a graphG = (V,E) is an assignment of colours to its vertices.
A colouring is proper if adjacent vertices always have different colours. A k-
colouring of G is a mapping from V into the set {1, 2, . . . , k} of k ”colours”.
The chromatic number of G denoted by χ(G) is the minimum value k such that
G has a proper k-colouring. If χ(G) = k, G is then said to be k-chromatic. The
value χ(G) is polynomial computable when χ(G) ≤ 2, but when χ(G) ≥ 3,
the problem becomes NP-complete, even for graphs G with degree ∆(G) ≥ 3.

Given a graphG = (V,E), S ⊆ V is an independent set inG if for whatever
two vertices v1, v2 in S, {v1, v2} /∈ E. Let I(G) be the set of all independent
sets of G. An independent set S ∈ I(G) is maximal, abbreviated as MIS, if it
is not a subset of any larger independent set and, it is maximum if it has the
largest size among all independent sets in I(G). The independence number
α(G) is the cardinality of the maximum independent set of G.

Let G = (V,E) be a graph, G is a bipartite graph if V can be partitioned
into two subsets U1 and U2, called partite sets, such that every edge of G
joins a vertex of U1 and a vertex of U2. If G is a k-chromatic graph, then it
is possible to partition V into k independent sets V1, V2, ..., Vk, called colour
classes, but it is not possible to partition V into k − 1 independent sets.

3 An Approximate Algorithm for χ(G)

Given an input connected graph G = (V,E), let n = |V |, m = |E| be the
number of nodes and edges, respectively. A depth-first search (dfs) on G is
applied starting the search with the node v ∈ V of minimum degree, and
selecting among different potential nodes to visit the node with minimum
degree first and with minimum value in its label as a second criterion.

While the dfs(G) is computed, a set IB, which consists of nodes not part
of odd cycle from G, can be computed in polynomial time on the size (n+m)
of G. We show that IB is a bipartite subgraph of G, and then IB can be
coloured at the end of the colouring process by the two last colours used for
the last bipartite subgraph from G (subprocedure 2-colouring).

If δ(G) = (2m/n) ≤ 2 then G has not intersected cycles and it can be
coloured in linear time on the number of nodes. Otherwise, if δ(G) is close to
n, e.g. δ(G) ≥ n − 4, the complement graph of G, denoted as G, shows the
different colour classes of G.

Let G0 be the initial graph which satisfies 2 < δ(G0) < n−3 and each node
of G0 is part of of odd basic cycles. Let Gi+1 = (Gi −Ki) be the remaining
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subgraph after the i-iteration of our procedure. Let us denote as δi to δ(Gi)
the average degree of Gi, ni = |V (Gi)| and mi = |E(Gi)|. In each iteration,
the procedure builds a MIS Ki+1 in the remaining subgraph Gi+1.

We show that our procedure builds a MIS Ki of Gi satisfying that if Gi

is a connected graph, then Ki is a maximal independent set of Gi such that
∑

x∈Ki
δ(x) ≥ |V (Gi)| − 1.

Theorem 1 Let G be a connected graph, there exists a maximal independent
set K of G such that

∑

x∈K
δ(x) ≥ |V (G)| − 1

Proof. The proof proceeds by induction on the number of nodes n of the
graph. ✷

Thus, let G be a connected graph such that |E(G)| ≥ |V (G)| + 1. The
Algorithm 1, called Build MIS(G), builds a MIS which satisfies Theorem 1.

Algorithm 1 BUILD MIS(G)

Require: G a non directed graph
Ensure: K0 is a MIS such that δG(K0) ≥ |V (G)| − 1
while |E(Gi)| > |V (Gi)| do {Contraction process}

choose a no articulation node x ∈ Gi

push x to a stack V and remove x from Gi

Gi+1 = Gi − {x}
end while

Builds K0 a MIS such that δ(K0) ≥ |V (Gi+1)| − 1
repeat {Extending the MIS K0}
pop x from stack V
if NGj−1

(x) ∩K0 = ∅ then

K0 = K0 ∪ {x}
end if

until stack is empty
Returns K0 {At this point δG(K0) ≥ |V (G)| − 1}

We describe the general strategy of our proposal for colouring G, called
Seek Chromatic Number(G) (Algorithm 2).

Firstly, in each main iteration of the loop in Algorithm 2, Gi is tested to be
polynomial-time 2-colourable and in this case, the procedure finishes and a
polynomial-time 2-colouring procedure is executed.
Secondly, a MIS Ki such that δGi

(Ki) ≥ |V (Gi)| − 1 is formed.
Thirdly, we colour the nodes in Ki with the current colour, and let Gi+1 =
Gi − {Ki}, and the process is repeated with Gi+1.

G. de Ita Luna et al. / Electronic Notes in Discrete Mathematics 46 (2014) 89–96 93



Algorithm 2 Seek Chromatic Number(G)

Require: G a non directed graph
Ensure: An approximate value for χ(G)
k = 3; G=dfs(G)
IB = {u ∈ V (G) : uis not part of any odd cycle of G
G = G− IB
if G is Polynomial 3Colourable then

Returns χ(G) is 3
end if

while is bipartite(G)==false do {While there are odd cycles in G}
T = Build MIS(G)
G = G− T
k = k + 1{Updating for the next MIS}

end while

G = G ∪ IB{returns the first bipartite component }
Call 2-colouring(G){At the end, the remaining graph is 2-colourable}
Returns χ(G) is k + 2

4 Complexity Analysis

Given a connected initial graph G, let G0 = (G − IB) be the input graph
without its intial bipartite component (IB), G0 = (V,E) with n = |V | and
m = |E|. Let us assume that m = t · n, t > 1, and that G0 has intersected
odd cycles, hence m > n.

Let Ti be the MIS formed in the iteration i of the loop of algorithm 2. Let
Gi+1 = Gi − Ti, ni+1 = |Vi+1|, mi+1 = |Ei+1| and let δi =

2mi

ni
be the average

degree of each subgraph Gi. In each iteration, the number of nodes and edges
are updated as: ni+1 = ni − |Ti| and mi+1 = mi − |EGi

(Ti)|, since in each
iteration the nodes in Ti are deleted as well as its incident edges: EGi

(Ti).

In each iteration algorithm 1 builds a MIS Ti of the current graph Gi such
that

∑

x∈Ti
δGi

(x) ≥ (ni − 1) under the assumptions that Gi is connected and
mi ≥ ni.

In the first iteration it holds:
∑

x∈T1
δG(x) ≥ (n − 1). In the second

iteration
∑

x∈T2
δG−T1

(x) ≥ n1−1 which is equivalent to
∑

x∈T2
δG(x)−|T1| ≥

(n − |T1|) − 1 since each node in T2 was originally adjacent to some node in
T1, T1 is the first MIS of G and n1 = n− |T1|. Thus

∑

x∈T2
δG(x) ≥ n− 1.

The same analysis holds for the third iterations
∑

x∈T3
δG−(T1∪T2)(x) ≥

n2−1 which is equivalent to
∑

x∈T3
δG(x)− (|T1|+ |T2|) ≥ (n−|T1|− |T2|)−1,

since each node in T3 was originally adjacent to some node in T1 and some
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node in T2, n2 = n− |T1| − |T2|. Thus,
∑

x∈T3
δG(x) ≥ n− 1.

The main cycle in algorithm 2 ends when the graph Gk is a bipartite graphs
(2-coloring graphs). Thus, in the iteration k, it holds

∑

x∈Tk
δG(x) ≥ n − 1.

So,

∑

x∈∪k
i=1

Ti

δG(x) =
∑

x∈V

δG(x) = 2m ≥ k · (n− 1)

since Ti, i = 1, . . . , k is a partition of V and the sum of the degree of the nodes
of a connected graph is the double of the number of edges.

The last inequality establishes an order of k ≤ (2m)/(n− 1) iterations for
the while in algorithm 2. Then, [(2m)/(n−1)]+1 colours are enough (because
of the two colours used in the last iteration) to colour the initial graph G, that
is δ(1 + [1/(n− 1)]) + 1, or

⌈

δ · n

n−1

⌉

+ 1 colours, δ = 2m/n being the average
degree of the initial graph G0.

Thus, if each Gi+1 generated by our heuristic is connected, then ⌈δ(G0)⌉+2
colours are enough for colouring the input graph G, where δ(G0) is the average
degree of the input graph G without its first bipartite component.

Notice that the main purpose to consider G0 = (G− IB) for starting the
iterative procedure Seek Chromatic Number is to reduce the possibilities that
Gi will be a disconnected subgraph, i = 1, . . . , k. But, if during an iteration
of our procedure Gi is disconnected, then χ(Gi) = max{χ(H1), . . . , χ(Ht)},
where Hi, . . . , Ht are the different connected components from Gi and the
number of colours for colouring G could not be upper bounded by ⌈δ(G0)⌉+2.

One of the most expensive time task included in Build MIS is to recog-
nize articulation points (or cut vertices) on the current subgraph, this task
is done in time O(m + n), and assuming m > n (which are the cases when
Build MIS is executed) the total time for recognizing articulation points is
O(m) = O(2m).

The number of iterations of the step 1 of Build MIS (which coincides
with the number of iterations in the step 3) is at most ⌈n/3⌉ because at
most ⌈n/3⌉ nodes can be removed from the original graph in order to form
an acyclic graph. And to determine the articulation points in the step 1 is
of order O(m). And the second step (to build the initial MIS) requires at
most time O(n). Then, Build MIS has a time complexity in the worst case
of O(n2) = ⌈n/3⌉ · n.

The most expensive step, with respect to the time complexity, of algo-
rithm 2 is the ”while” whose body has a time complexity of O(n2) because it
consists of performing Build MIS. The number of iterations in algorithm 2

G. de Ita Luna et al. / Electronic Notes in Discrete Mathematics 46 (2014) 89–96 95



is proportional to δ(G) · n

n−1
, then in the worst case the total time of our pro-

cedure will be n2 · 2m
n

· n

n−1
= 2n2

·m

n−1
≈ 2 ·m · n. Thus, an upper bound for the

time complexity of our procedure is O(m · n), which is a polynomial value on
the size of the input graph G.

5 Conclusions

We have presented a novel polynomial-time algorithm for determining the
chromatic number of a graph χ(G). Given an input connected graph G, our
heuristic discards a first bipartite component of G, denoted by IB, formed
by the nodes which are no part of odd cycle in G since those nodes can
be coloured at the end of the process with the first two basic colours. Let
G0 = G− IB be the remaining subgraph. Our proposal is based on selecting,
in an iterative manner, a MIS Ki from the current subgraph Gi such that
δGi

(Ki) ≥ |V (Gi)| − 1. That lower bound on the number of edges in the
current graph Gi, with an endpoint in any node of Ki, allow us to design an
iterative procedure such that if each remained subgraph Gi+1 = (Gi − Ki)
is connected, then we obtain an upper bound to colour a graph; given that
⌈δ(G0)⌉+2 colours are enough to colour the input graph G, where δ(G0) is the
average degree of the initial subgraph without its first bipartite component.

On the other hand, if anyGi is disconnected then χ(Gi) = max{χ(H1), . . . ,
χ(Ht)} where Hi, . . . , Ht are the different connected components from Gi.
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